Blob


1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
3 /*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
39 #include <string.h>
41 #include "got_compat.h"
42 #include "sha2.h"
44 #define DEF_WEAK(x) void __ssh_compat_weak_##x(void)
46 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
47 !defined(HAVE_SHA512UPDATE)
49 /* no-op out, similar to DEF_WEAK but only needed here */
50 #define MAKE_CLONE(x, y) void __ssh_compat_make_clone_##x_##y(void)
52 /*
53 * UNROLLED TRANSFORM LOOP NOTE:
54 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
55 * loop version for the hash transform rounds (defined using macros
56 * later in this file). Either define on the command line, for example:
57 *
58 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
59 *
60 * or define below:
61 *
62 * #define SHA2_UNROLL_TRANSFORM
63 *
64 */
65 #ifndef SHA2_SMALL
66 #if defined(__amd64__) || defined(__i386__)
67 #define SHA2_UNROLL_TRANSFORM
68 #endif
69 #endif
71 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
72 /*
73 * BYTE_ORDER NOTE:
74 *
75 * Please make sure that your system defines BYTE_ORDER. If your
76 * architecture is little-endian, make sure it also defines
77 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
78 * equivalent.
79 *
80 * If your system does not define the above, then you can do so by
81 * hand like this:
82 *
83 * #define LITTLE_ENDIAN 1234
84 * #define BIG_ENDIAN 4321
85 *
86 * And for little-endian machines, add:
87 *
88 * #define BYTE_ORDER LITTLE_ENDIAN
89 *
90 * Or for big-endian machines:
91 *
92 * #define BYTE_ORDER BIG_ENDIAN
93 *
94 * The FreeBSD machine this was written on defines BYTE_ORDER
95 * appropriately by including <sys/types.h> (which in turn includes
96 * <machine/endian.h> where the appropriate definitions are actually
97 * made).
98 */
99 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
100 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
101 #endif
104 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
105 /* NOTE: Most of these are in sha2.h */
106 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
107 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
108 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
109 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
111 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
112 #define BE_8_TO_32(dst, cp) do { \
113 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
114 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
115 } while(0)
117 #define BE_8_TO_64(dst, cp) do { \
118 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
119 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
120 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
121 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
122 } while (0)
124 #define BE_64_TO_8(cp, src) do { \
125 (cp)[0] = (src) >> 56; \
126 (cp)[1] = (src) >> 48; \
127 (cp)[2] = (src) >> 40; \
128 (cp)[3] = (src) >> 32; \
129 (cp)[4] = (src) >> 24; \
130 (cp)[5] = (src) >> 16; \
131 (cp)[6] = (src) >> 8; \
132 (cp)[7] = (src); \
133 } while (0)
135 #define BE_32_TO_8(cp, src) do { \
136 (cp)[0] = (src) >> 24; \
137 (cp)[1] = (src) >> 16; \
138 (cp)[2] = (src) >> 8; \
139 (cp)[3] = (src); \
140 } while (0)
142 /*
143 * Macro for incrementally adding the unsigned 64-bit integer n to the
144 * unsigned 128-bit integer (represented using a two-element array of
145 * 64-bit words):
146 */
147 #define ADDINC128(w,n) do { \
148 (w)[0] += (u_int64_t)(n); \
149 if ((w)[0] < (n)) { \
150 (w)[1]++; \
151 } \
152 } while (0)
154 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
155 /*
156 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
158 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
159 * S is a ROTATION) because the SHA-224/256/384/512 description document
160 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
161 * same "backwards" definition.
162 */
163 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
164 #define R(b,x) ((x) >> (b))
165 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
166 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
167 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
168 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
170 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
171 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
172 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
174 /* Four of six logical functions used in SHA-224 and SHA-256: */
175 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
176 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
177 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
178 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
180 /* Four of six logical functions used in SHA-384 and SHA-512: */
181 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
182 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
183 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
184 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
187 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
188 /* Hash constant words K for SHA-224 and SHA-256: */
189 static const u_int32_t K256[64] = {
190 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
191 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
192 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
193 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
194 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
195 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
196 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
197 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
198 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
199 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
200 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
201 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
202 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
203 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
204 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
205 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
206 };
208 /* Initial hash value H for SHA-256: */
209 static const u_int32_t sha256_initial_hash_value[8] = {
210 0x6a09e667UL,
211 0xbb67ae85UL,
212 0x3c6ef372UL,
213 0xa54ff53aUL,
214 0x510e527fUL,
215 0x9b05688cUL,
216 0x1f83d9abUL,
217 0x5be0cd19UL
218 };
220 /* Hash constant words K for SHA-384 and SHA-512: */
221 static const u_int64_t K512[80] = {
222 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
223 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
224 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
225 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
226 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
227 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
228 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
229 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
230 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
231 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
232 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
233 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
234 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
235 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
236 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
237 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
238 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
239 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
240 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
241 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
242 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
243 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
244 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
245 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
246 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
247 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
248 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
249 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
250 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
251 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
252 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
253 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
254 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
255 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
256 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
257 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
258 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
259 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
260 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
261 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
262 };
264 /* Initial hash value H for SHA-512 */
265 static const u_int64_t sha512_initial_hash_value[8] = {
266 0x6a09e667f3bcc908ULL,
267 0xbb67ae8584caa73bULL,
268 0x3c6ef372fe94f82bULL,
269 0xa54ff53a5f1d36f1ULL,
270 0x510e527fade682d1ULL,
271 0x9b05688c2b3e6c1fULL,
272 0x1f83d9abfb41bd6bULL,
273 0x5be0cd19137e2179ULL
274 };
276 #if !defined(SHA2_SMALL)
277 #if 0
278 /* Initial hash value H for SHA-224: */
279 static const u_int32_t sha224_initial_hash_value[8] = {
280 0xc1059ed8UL,
281 0x367cd507UL,
282 0x3070dd17UL,
283 0xf70e5939UL,
284 0xffc00b31UL,
285 0x68581511UL,
286 0x64f98fa7UL,
287 0xbefa4fa4UL
288 };
289 #endif /* 0 */
291 /* Initial hash value H for SHA-384 */
292 static const u_int64_t sha384_initial_hash_value[8] = {
293 0xcbbb9d5dc1059ed8ULL,
294 0x629a292a367cd507ULL,
295 0x9159015a3070dd17ULL,
296 0x152fecd8f70e5939ULL,
297 0x67332667ffc00b31ULL,
298 0x8eb44a8768581511ULL,
299 0xdb0c2e0d64f98fa7ULL,
300 0x47b5481dbefa4fa4ULL
301 };
303 #if 0
304 /* Initial hash value H for SHA-512-256 */
305 static const u_int64_t sha512_256_initial_hash_value[8] = {
306 0x22312194fc2bf72cULL,
307 0x9f555fa3c84c64c2ULL,
308 0x2393b86b6f53b151ULL,
309 0x963877195940eabdULL,
310 0x96283ee2a88effe3ULL,
311 0xbe5e1e2553863992ULL,
312 0x2b0199fc2c85b8aaULL,
313 0x0eb72ddc81c52ca2ULL
314 };
316 /*** SHA-224: *********************************************************/
317 void
318 SHA224Init(SHA2_CTX *context)
320 memcpy(context->state.st32, sha224_initial_hash_value,
321 sizeof(sha224_initial_hash_value));
322 memset(context->buffer, 0, sizeof(context->buffer));
323 context->bitcount[0] = 0;
325 DEF_WEAK(SHA224Init);
327 MAKE_CLONE(SHA224Transform, SHA256Transform);
328 MAKE_CLONE(SHA224Update, SHA256Update);
329 MAKE_CLONE(SHA224Pad, SHA256Pad);
330 DEF_WEAK(SHA224Transform);
331 DEF_WEAK(SHA224Update);
332 DEF_WEAK(SHA224Pad);
334 void
335 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
337 SHA224Pad(context);
339 #if BYTE_ORDER == LITTLE_ENDIAN
340 int i;
342 /* Convert TO host byte order */
343 for (i = 0; i < 7; i++)
344 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
345 #else
346 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
347 #endif
348 explicit_bzero(context, sizeof(*context));
350 DEF_WEAK(SHA224Final);
351 #endif /* !defined(SHA2_SMALL) */
352 #endif /* 0 */
354 /*** SHA-256: *********************************************************/
355 void
356 SHA256Init(SHA2_CTX *context)
358 memcpy(context->state.st32, sha256_initial_hash_value,
359 sizeof(sha256_initial_hash_value));
360 memset(context->buffer, 0, sizeof(context->buffer));
361 context->bitcount[0] = 0;
363 DEF_WEAK(SHA256Init);
365 #ifdef SHA2_UNROLL_TRANSFORM
367 /* Unrolled SHA-256 round macros: */
369 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
370 BE_8_TO_32(W256[j], data); \
371 data += 4; \
372 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
373 (d) += T1; \
374 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
375 j++; \
376 } while(0)
378 #define ROUND256(a,b,c,d,e,f,g,h) do { \
379 s0 = W256[(j+1)&0x0f]; \
380 s0 = sigma0_256(s0); \
381 s1 = W256[(j+14)&0x0f]; \
382 s1 = sigma1_256(s1); \
383 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
384 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
385 (d) += T1; \
386 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
387 j++; \
388 } while(0)
390 void
391 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
393 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
394 u_int32_t T1, W256[16];
395 int j;
397 /* Initialize registers with the prev. intermediate value */
398 a = state[0];
399 b = state[1];
400 c = state[2];
401 d = state[3];
402 e = state[4];
403 f = state[5];
404 g = state[6];
405 h = state[7];
407 j = 0;
408 do {
409 /* Rounds 0 to 15 (unrolled): */
410 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
411 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
412 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
413 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
414 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
415 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
416 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
417 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
418 } while (j < 16);
420 /* Now for the remaining rounds up to 63: */
421 do {
422 ROUND256(a,b,c,d,e,f,g,h);
423 ROUND256(h,a,b,c,d,e,f,g);
424 ROUND256(g,h,a,b,c,d,e,f);
425 ROUND256(f,g,h,a,b,c,d,e);
426 ROUND256(e,f,g,h,a,b,c,d);
427 ROUND256(d,e,f,g,h,a,b,c);
428 ROUND256(c,d,e,f,g,h,a,b);
429 ROUND256(b,c,d,e,f,g,h,a);
430 } while (j < 64);
432 /* Compute the current intermediate hash value */
433 state[0] += a;
434 state[1] += b;
435 state[2] += c;
436 state[3] += d;
437 state[4] += e;
438 state[5] += f;
439 state[6] += g;
440 state[7] += h;
442 /* Clean up */
443 a = b = c = d = e = f = g = h = T1 = 0;
446 #else /* SHA2_UNROLL_TRANSFORM */
448 void
449 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
451 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
452 u_int32_t T1, T2, W256[16];
453 int j;
455 /* Initialize registers with the prev. intermediate value */
456 a = state[0];
457 b = state[1];
458 c = state[2];
459 d = state[3];
460 e = state[4];
461 f = state[5];
462 g = state[6];
463 h = state[7];
465 j = 0;
466 do {
467 BE_8_TO_32(W256[j], data);
468 data += 4;
469 /* Apply the SHA-256 compression function to update a..h */
470 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
471 T2 = Sigma0_256(a) + Maj(a, b, c);
472 h = g;
473 g = f;
474 f = e;
475 e = d + T1;
476 d = c;
477 c = b;
478 b = a;
479 a = T1 + T2;
481 j++;
482 } while (j < 16);
484 do {
485 /* Part of the message block expansion: */
486 s0 = W256[(j+1)&0x0f];
487 s0 = sigma0_256(s0);
488 s1 = W256[(j+14)&0x0f];
489 s1 = sigma1_256(s1);
491 /* Apply the SHA-256 compression function to update a..h */
492 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
493 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
494 T2 = Sigma0_256(a) + Maj(a, b, c);
495 h = g;
496 g = f;
497 f = e;
498 e = d + T1;
499 d = c;
500 c = b;
501 b = a;
502 a = T1 + T2;
504 j++;
505 } while (j < 64);
507 /* Compute the current intermediate hash value */
508 state[0] += a;
509 state[1] += b;
510 state[2] += c;
511 state[3] += d;
512 state[4] += e;
513 state[5] += f;
514 state[6] += g;
515 state[7] += h;
517 /* Clean up */
518 a = b = c = d = e = f = g = h = T1 = T2 = 0;
521 #endif /* SHA2_UNROLL_TRANSFORM */
522 DEF_WEAK(SHA256Transform);
524 void
525 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
527 u_int64_t freespace, usedspace;
529 /* Calling with no data is valid (we do nothing) */
530 if (len == 0)
531 return;
533 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
534 if (usedspace > 0) {
535 /* Calculate how much free space is available in the buffer */
536 freespace = SHA256_BLOCK_LENGTH - usedspace;
538 if (len >= freespace) {
539 /* Fill the buffer completely and process it */
540 memcpy(&context->buffer[usedspace], data, freespace);
541 context->bitcount[0] += freespace << 3;
542 len -= freespace;
543 data += freespace;
544 SHA256Transform(context->state.st32, context->buffer);
545 } else {
546 /* The buffer is not yet full */
547 memcpy(&context->buffer[usedspace], data, len);
548 context->bitcount[0] += (u_int64_t)len << 3;
549 /* Clean up: */
550 usedspace = freespace = 0;
551 return;
554 while (len >= SHA256_BLOCK_LENGTH) {
555 /* Process as many complete blocks as we can */
556 SHA256Transform(context->state.st32, data);
557 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
558 len -= SHA256_BLOCK_LENGTH;
559 data += SHA256_BLOCK_LENGTH;
561 if (len > 0) {
562 /* There's left-overs, so save 'em */
563 memcpy(context->buffer, data, len);
564 context->bitcount[0] += len << 3;
566 /* Clean up: */
567 usedspace = freespace = 0;
569 DEF_WEAK(SHA256Update);
571 void
572 SHA256Pad(SHA2_CTX *context)
574 unsigned int usedspace;
576 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
577 if (usedspace > 0) {
578 /* Begin padding with a 1 bit: */
579 context->buffer[usedspace++] = 0x80;
581 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
582 /* Set-up for the last transform: */
583 memset(&context->buffer[usedspace], 0,
584 SHA256_SHORT_BLOCK_LENGTH - usedspace);
585 } else {
586 if (usedspace < SHA256_BLOCK_LENGTH) {
587 memset(&context->buffer[usedspace], 0,
588 SHA256_BLOCK_LENGTH - usedspace);
590 /* Do second-to-last transform: */
591 SHA256Transform(context->state.st32, context->buffer);
593 /* Prepare for last transform: */
594 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
596 } else {
597 /* Set-up for the last transform: */
598 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
600 /* Begin padding with a 1 bit: */
601 *context->buffer = 0x80;
603 /* Store the length of input data (in bits) in big endian format: */
604 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
605 context->bitcount[0]);
607 /* Final transform: */
608 SHA256Transform(context->state.st32, context->buffer);
610 /* Clean up: */
611 usedspace = 0;
613 DEF_WEAK(SHA256Pad);
615 void
616 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
618 SHA256Pad(context);
620 #if BYTE_ORDER == LITTLE_ENDIAN
621 int i;
623 /* Convert TO host byte order */
624 for (i = 0; i < 8; i++)
625 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
626 #else
627 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
628 #endif
629 explicit_bzero(context, sizeof(*context));
631 DEF_WEAK(SHA256Final);
634 /*** SHA-512: *********************************************************/
635 void
636 SHA512Init(SHA2_CTX *context)
638 memcpy(context->state.st64, sha512_initial_hash_value,
639 sizeof(sha512_initial_hash_value));
640 memset(context->buffer, 0, sizeof(context->buffer));
641 context->bitcount[0] = context->bitcount[1] = 0;
643 DEF_WEAK(SHA512Init);
645 #ifdef SHA2_UNROLL_TRANSFORM
647 /* Unrolled SHA-512 round macros: */
649 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
650 BE_8_TO_64(W512[j], data); \
651 data += 8; \
652 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
653 (d) += T1; \
654 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
655 j++; \
656 } while(0)
659 #define ROUND512(a,b,c,d,e,f,g,h) do { \
660 s0 = W512[(j+1)&0x0f]; \
661 s0 = sigma0_512(s0); \
662 s1 = W512[(j+14)&0x0f]; \
663 s1 = sigma1_512(s1); \
664 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
665 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
666 (d) += T1; \
667 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
668 j++; \
669 } while(0)
671 void
672 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
674 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
675 u_int64_t T1, W512[16];
676 int j;
678 /* Initialize registers with the prev. intermediate value */
679 a = state[0];
680 b = state[1];
681 c = state[2];
682 d = state[3];
683 e = state[4];
684 f = state[5];
685 g = state[6];
686 h = state[7];
688 j = 0;
689 do {
690 /* Rounds 0 to 15 (unrolled): */
691 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
692 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
693 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
694 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
695 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
696 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
697 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
698 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
699 } while (j < 16);
701 /* Now for the remaining rounds up to 79: */
702 do {
703 ROUND512(a,b,c,d,e,f,g,h);
704 ROUND512(h,a,b,c,d,e,f,g);
705 ROUND512(g,h,a,b,c,d,e,f);
706 ROUND512(f,g,h,a,b,c,d,e);
707 ROUND512(e,f,g,h,a,b,c,d);
708 ROUND512(d,e,f,g,h,a,b,c);
709 ROUND512(c,d,e,f,g,h,a,b);
710 ROUND512(b,c,d,e,f,g,h,a);
711 } while (j < 80);
713 /* Compute the current intermediate hash value */
714 state[0] += a;
715 state[1] += b;
716 state[2] += c;
717 state[3] += d;
718 state[4] += e;
719 state[5] += f;
720 state[6] += g;
721 state[7] += h;
723 /* Clean up */
724 a = b = c = d = e = f = g = h = T1 = 0;
727 #else /* SHA2_UNROLL_TRANSFORM */
729 void
730 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
732 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
733 u_int64_t T1, T2, W512[16];
734 int j;
736 /* Initialize registers with the prev. intermediate value */
737 a = state[0];
738 b = state[1];
739 c = state[2];
740 d = state[3];
741 e = state[4];
742 f = state[5];
743 g = state[6];
744 h = state[7];
746 j = 0;
747 do {
748 BE_8_TO_64(W512[j], data);
749 data += 8;
750 /* Apply the SHA-512 compression function to update a..h */
751 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
752 T2 = Sigma0_512(a) + Maj(a, b, c);
753 h = g;
754 g = f;
755 f = e;
756 e = d + T1;
757 d = c;
758 c = b;
759 b = a;
760 a = T1 + T2;
762 j++;
763 } while (j < 16);
765 do {
766 /* Part of the message block expansion: */
767 s0 = W512[(j+1)&0x0f];
768 s0 = sigma0_512(s0);
769 s1 = W512[(j+14)&0x0f];
770 s1 = sigma1_512(s1);
772 /* Apply the SHA-512 compression function to update a..h */
773 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
774 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
775 T2 = Sigma0_512(a) + Maj(a, b, c);
776 h = g;
777 g = f;
778 f = e;
779 e = d + T1;
780 d = c;
781 c = b;
782 b = a;
783 a = T1 + T2;
785 j++;
786 } while (j < 80);
788 /* Compute the current intermediate hash value */
789 state[0] += a;
790 state[1] += b;
791 state[2] += c;
792 state[3] += d;
793 state[4] += e;
794 state[5] += f;
795 state[6] += g;
796 state[7] += h;
798 /* Clean up */
799 a = b = c = d = e = f = g = h = T1 = T2 = 0;
802 #endif /* SHA2_UNROLL_TRANSFORM */
803 DEF_WEAK(SHA512Transform);
805 void
806 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
808 size_t freespace, usedspace;
810 /* Calling with no data is valid (we do nothing) */
811 if (len == 0)
812 return;
814 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
815 if (usedspace > 0) {
816 /* Calculate how much free space is available in the buffer */
817 freespace = SHA512_BLOCK_LENGTH - usedspace;
819 if (len >= freespace) {
820 /* Fill the buffer completely and process it */
821 memcpy(&context->buffer[usedspace], data, freespace);
822 ADDINC128(context->bitcount, freespace << 3);
823 len -= freespace;
824 data += freespace;
825 SHA512Transform(context->state.st64, context->buffer);
826 } else {
827 /* The buffer is not yet full */
828 memcpy(&context->buffer[usedspace], data, len);
829 ADDINC128(context->bitcount, len << 3);
830 /* Clean up: */
831 usedspace = freespace = 0;
832 return;
835 while (len >= SHA512_BLOCK_LENGTH) {
836 /* Process as many complete blocks as we can */
837 SHA512Transform(context->state.st64, data);
838 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
839 len -= SHA512_BLOCK_LENGTH;
840 data += SHA512_BLOCK_LENGTH;
842 if (len > 0) {
843 /* There's left-overs, so save 'em */
844 memcpy(context->buffer, data, len);
845 ADDINC128(context->bitcount, len << 3);
847 /* Clean up: */
848 usedspace = freespace = 0;
850 DEF_WEAK(SHA512Update);
852 void
853 SHA512Pad(SHA2_CTX *context)
855 unsigned int usedspace;
857 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
858 if (usedspace > 0) {
859 /* Begin padding with a 1 bit: */
860 context->buffer[usedspace++] = 0x80;
862 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
863 /* Set-up for the last transform: */
864 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
865 } else {
866 if (usedspace < SHA512_BLOCK_LENGTH) {
867 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
869 /* Do second-to-last transform: */
870 SHA512Transform(context->state.st64, context->buffer);
872 /* And set-up for the last transform: */
873 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
875 } else {
876 /* Prepare for final transform: */
877 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
879 /* Begin padding with a 1 bit: */
880 *context->buffer = 0x80;
882 /* Store the length of input data (in bits) in big endian format: */
883 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
884 context->bitcount[1]);
885 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
886 context->bitcount[0]);
888 /* Final transform: */
889 SHA512Transform(context->state.st64, context->buffer);
891 /* Clean up: */
892 usedspace = 0;
894 DEF_WEAK(SHA512Pad);
896 void
897 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
899 SHA512Pad(context);
901 #if BYTE_ORDER == LITTLE_ENDIAN
902 int i;
904 /* Convert TO host byte order */
905 for (i = 0; i < 8; i++)
906 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
907 #else
908 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
909 #endif
910 explicit_bzero(context, sizeof(*context));
912 DEF_WEAK(SHA512Final);
914 #if !defined(SHA2_SMALL)
916 /*** SHA-384: *********************************************************/
917 void
918 SHA384Init(SHA2_CTX *context)
920 memcpy(context->state.st64, sha384_initial_hash_value,
921 sizeof(sha384_initial_hash_value));
922 memset(context->buffer, 0, sizeof(context->buffer));
923 context->bitcount[0] = context->bitcount[1] = 0;
925 DEF_WEAK(SHA384Init);
927 MAKE_CLONE(SHA384Transform, SHA512Transform);
928 MAKE_CLONE(SHA384Update, SHA512Update);
929 MAKE_CLONE(SHA384Pad, SHA512Pad);
930 DEF_WEAK(SHA384Transform);
931 DEF_WEAK(SHA384Update);
932 DEF_WEAK(SHA384Pad);
934 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
935 void
936 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
938 SHA512Transform(state, data);
941 void
942 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
944 SHA512Update(context, data, len);
947 void
948 SHA384Pad(SHA2_CTX *context)
950 SHA512Pad(context);
953 void
954 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
956 SHA384Pad(context);
958 #if BYTE_ORDER == LITTLE_ENDIAN
959 int i;
961 /* Convert TO host byte order */
962 for (i = 0; i < 6; i++)
963 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
964 #else
965 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
966 #endif
967 /* Zero out state data */
968 explicit_bzero(context, sizeof(*context));
970 DEF_WEAK(SHA384Final);
972 #if 0
973 /*** SHA-512/256: *********************************************************/
974 void
975 SHA512_256Init(SHA2_CTX *context)
977 memcpy(context->state.st64, sha512_256_initial_hash_value,
978 sizeof(sha512_256_initial_hash_value));
979 memset(context->buffer, 0, sizeof(context->buffer));
980 context->bitcount[0] = context->bitcount[1] = 0;
982 DEF_WEAK(SHA512_256Init);
984 MAKE_CLONE(SHA512_256Transform, SHA512Transform);
985 MAKE_CLONE(SHA512_256Update, SHA512Update);
986 MAKE_CLONE(SHA512_256Pad, SHA512Pad);
987 DEF_WEAK(SHA512_256Transform);
988 DEF_WEAK(SHA512_256Update);
989 DEF_WEAK(SHA512_256Pad);
991 void
992 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
994 SHA512_256Pad(context);
996 #if BYTE_ORDER == LITTLE_ENDIAN
997 int i;
999 /* Convert TO host byte order */
1000 for (i = 0; i < 4; i++)
1001 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
1002 #else
1003 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1004 #endif
1005 /* Zero out state data */
1006 explicit_bzero(context, sizeof(*context));
1008 DEF_WEAK(SHA512_256Final);
1009 #endif /* !defined(SHA2_SMALL) */
1010 #endif /* 0 */
1012 #endif /* HAVE_SHA{256,384,512}UPDATE */