Blob


1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
3 /*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
39 #include <string.h>
41 #include "got_compat.h"
43 #define DEF_WEAK(x) void __ssh_compat_weak_##x(void)
45 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
46 !defined(HAVE_SHA512UPDATE)
48 /* no-op out, similar to DEF_WEAK but only needed here */
49 #define MAKE_CLONE(x, y) void __ssh_compat_make_clone_##x_##y(void)
51 /*
52 * UNROLLED TRANSFORM LOOP NOTE:
53 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
54 * loop version for the hash transform rounds (defined using macros
55 * later in this file). Either define on the command line, for example:
56 *
57 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
58 *
59 * or define below:
60 *
61 * #define SHA2_UNROLL_TRANSFORM
62 *
63 */
64 #ifndef SHA2_SMALL
65 #if defined(__amd64__) || defined(__i386__)
66 #define SHA2_UNROLL_TRANSFORM
67 #endif
68 #endif
70 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
71 /*
72 * BYTE_ORDER NOTE:
73 *
74 * Please make sure that your system defines BYTE_ORDER. If your
75 * architecture is little-endian, make sure it also defines
76 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
77 * equivalent.
78 *
79 * If your system does not define the above, then you can do so by
80 * hand like this:
81 *
82 * #define LITTLE_ENDIAN 1234
83 * #define BIG_ENDIAN 4321
84 *
85 * And for little-endian machines, add:
86 *
87 * #define BYTE_ORDER LITTLE_ENDIAN
88 *
89 * Or for big-endian machines:
90 *
91 * #define BYTE_ORDER BIG_ENDIAN
92 *
93 * The FreeBSD machine this was written on defines BYTE_ORDER
94 * appropriately by including <sys/types.h> (which in turn includes
95 * <machine/endian.h> where the appropriate definitions are actually
96 * made).
97 */
98 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
99 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
100 #endif
103 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
104 /* NOTE: Most of these are in sha2.h */
105 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
106 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
107 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
108 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
110 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
111 #define BE_8_TO_32(dst, cp) do { \
112 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
113 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
114 } while(0)
116 #define BE_8_TO_64(dst, cp) do { \
117 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
118 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
119 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
120 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
121 } while (0)
123 #define BE_64_TO_8(cp, src) do { \
124 (cp)[0] = (src) >> 56; \
125 (cp)[1] = (src) >> 48; \
126 (cp)[2] = (src) >> 40; \
127 (cp)[3] = (src) >> 32; \
128 (cp)[4] = (src) >> 24; \
129 (cp)[5] = (src) >> 16; \
130 (cp)[6] = (src) >> 8; \
131 (cp)[7] = (src); \
132 } while (0)
134 #define BE_32_TO_8(cp, src) do { \
135 (cp)[0] = (src) >> 24; \
136 (cp)[1] = (src) >> 16; \
137 (cp)[2] = (src) >> 8; \
138 (cp)[3] = (src); \
139 } while (0)
141 /*
142 * Macro for incrementally adding the unsigned 64-bit integer n to the
143 * unsigned 128-bit integer (represented using a two-element array of
144 * 64-bit words):
145 */
146 #define ADDINC128(w,n) do { \
147 (w)[0] += (u_int64_t)(n); \
148 if ((w)[0] < (n)) { \
149 (w)[1]++; \
150 } \
151 } while (0)
153 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
154 /*
155 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
157 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
158 * S is a ROTATION) because the SHA-224/256/384/512 description document
159 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
160 * same "backwards" definition.
161 */
162 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
163 #define R(b,x) ((x) >> (b))
164 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
165 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
166 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
167 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
169 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
170 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
171 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
173 /* Four of six logical functions used in SHA-224 and SHA-256: */
174 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
175 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
176 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
177 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
179 /* Four of six logical functions used in SHA-384 and SHA-512: */
180 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
181 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
182 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
183 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
186 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
187 /* Hash constant words K for SHA-224 and SHA-256: */
188 static const u_int32_t K256[64] = {
189 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
190 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
191 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
192 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
193 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
194 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
195 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
196 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
197 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
198 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
199 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
200 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
201 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
202 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
203 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
204 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
205 };
207 /* Initial hash value H for SHA-256: */
208 static const u_int32_t sha256_initial_hash_value[8] = {
209 0x6a09e667UL,
210 0xbb67ae85UL,
211 0x3c6ef372UL,
212 0xa54ff53aUL,
213 0x510e527fUL,
214 0x9b05688cUL,
215 0x1f83d9abUL,
216 0x5be0cd19UL
217 };
219 #if 0
220 /* Hash constant words K for SHA-384 and SHA-512: */
221 static const u_int64_t K512[80] = {
222 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
223 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
224 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
225 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
226 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
227 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
228 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
229 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
230 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
231 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
232 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
233 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
234 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
235 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
236 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
237 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
238 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
239 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
240 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
241 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
242 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
243 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
244 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
245 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
246 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
247 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
248 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
249 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
250 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
251 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
252 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
253 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
254 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
255 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
256 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
257 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
258 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
259 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
260 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
261 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
262 };
264 /* Initial hash value H for SHA-512 */
265 static const u_int64_t sha512_initial_hash_value[8] = {
266 0x6a09e667f3bcc908ULL,
267 0xbb67ae8584caa73bULL,
268 0x3c6ef372fe94f82bULL,
269 0xa54ff53a5f1d36f1ULL,
270 0x510e527fade682d1ULL,
271 0x9b05688c2b3e6c1fULL,
272 0x1f83d9abfb41bd6bULL,
273 0x5be0cd19137e2179ULL
274 };
276 #if !defined(SHA2_SMALL)
277 /* Initial hash value H for SHA-224: */
278 static const u_int32_t sha224_initial_hash_value[8] = {
279 0xc1059ed8UL,
280 0x367cd507UL,
281 0x3070dd17UL,
282 0xf70e5939UL,
283 0xffc00b31UL,
284 0x68581511UL,
285 0x64f98fa7UL,
286 0xbefa4fa4UL
287 };
289 /* Initial hash value H for SHA-384 */
290 static const u_int64_t sha384_initial_hash_value[8] = {
291 0xcbbb9d5dc1059ed8ULL,
292 0x629a292a367cd507ULL,
293 0x9159015a3070dd17ULL,
294 0x152fecd8f70e5939ULL,
295 0x67332667ffc00b31ULL,
296 0x8eb44a8768581511ULL,
297 0xdb0c2e0d64f98fa7ULL,
298 0x47b5481dbefa4fa4ULL
299 };
301 /* Initial hash value H for SHA-512-256 */
302 static const u_int64_t sha512_256_initial_hash_value[8] = {
303 0x22312194fc2bf72cULL,
304 0x9f555fa3c84c64c2ULL,
305 0x2393b86b6f53b151ULL,
306 0x963877195940eabdULL,
307 0x96283ee2a88effe3ULL,
308 0xbe5e1e2553863992ULL,
309 0x2b0199fc2c85b8aaULL,
310 0x0eb72ddc81c52ca2ULL
311 };
313 /*** SHA-224: *********************************************************/
314 void
315 SHA224Init(SHA2_CTX *context)
317 memcpy(context->state.st32, sha224_initial_hash_value,
318 sizeof(sha224_initial_hash_value));
319 memset(context->buffer, 0, sizeof(context->buffer));
320 context->bitcount[0] = 0;
322 DEF_WEAK(SHA224Init);
324 MAKE_CLONE(SHA224Transform, SHA256Transform);
325 MAKE_CLONE(SHA224Update, SHA256Update);
326 MAKE_CLONE(SHA224Pad, SHA256Pad);
327 DEF_WEAK(SHA224Transform);
328 DEF_WEAK(SHA224Update);
329 DEF_WEAK(SHA224Pad);
331 void
332 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
334 SHA224Pad(context);
336 #if BYTE_ORDER == LITTLE_ENDIAN
337 int i;
339 /* Convert TO host byte order */
340 for (i = 0; i < 7; i++)
341 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
342 #else
343 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
344 #endif
345 explicit_bzero(context, sizeof(*context));
347 DEF_WEAK(SHA224Final);
348 #endif /* !defined(SHA2_SMALL) */
349 #endif /* 0 */
351 /*** SHA-256: *********************************************************/
352 void
353 SHA256Init(SHA2_CTX *context)
355 memcpy(context->state.st32, sha256_initial_hash_value,
356 sizeof(sha256_initial_hash_value));
357 memset(context->buffer, 0, sizeof(context->buffer));
358 context->bitcount[0] = 0;
360 DEF_WEAK(SHA256Init);
362 #ifdef SHA2_UNROLL_TRANSFORM
364 /* Unrolled SHA-256 round macros: */
366 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
367 BE_8_TO_32(W256[j], data); \
368 data += 4; \
369 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
370 (d) += T1; \
371 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
372 j++; \
373 } while(0)
375 #define ROUND256(a,b,c,d,e,f,g,h) do { \
376 s0 = W256[(j+1)&0x0f]; \
377 s0 = sigma0_256(s0); \
378 s1 = W256[(j+14)&0x0f]; \
379 s1 = sigma1_256(s1); \
380 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
381 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
382 (d) += T1; \
383 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
384 j++; \
385 } while(0)
387 void
388 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
390 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
391 u_int32_t T1, W256[16];
392 int j;
394 /* Initialize registers with the prev. intermediate value */
395 a = state[0];
396 b = state[1];
397 c = state[2];
398 d = state[3];
399 e = state[4];
400 f = state[5];
401 g = state[6];
402 h = state[7];
404 j = 0;
405 do {
406 /* Rounds 0 to 15 (unrolled): */
407 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
408 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
409 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
410 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
411 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
412 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
413 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
414 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
415 } while (j < 16);
417 /* Now for the remaining rounds up to 63: */
418 do {
419 ROUND256(a,b,c,d,e,f,g,h);
420 ROUND256(h,a,b,c,d,e,f,g);
421 ROUND256(g,h,a,b,c,d,e,f);
422 ROUND256(f,g,h,a,b,c,d,e);
423 ROUND256(e,f,g,h,a,b,c,d);
424 ROUND256(d,e,f,g,h,a,b,c);
425 ROUND256(c,d,e,f,g,h,a,b);
426 ROUND256(b,c,d,e,f,g,h,a);
427 } while (j < 64);
429 /* Compute the current intermediate hash value */
430 state[0] += a;
431 state[1] += b;
432 state[2] += c;
433 state[3] += d;
434 state[4] += e;
435 state[5] += f;
436 state[6] += g;
437 state[7] += h;
439 /* Clean up */
440 a = b = c = d = e = f = g = h = T1 = 0;
443 #else /* SHA2_UNROLL_TRANSFORM */
445 void
446 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
448 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
449 u_int32_t T1, T2, W256[16];
450 int j;
452 /* Initialize registers with the prev. intermediate value */
453 a = state[0];
454 b = state[1];
455 c = state[2];
456 d = state[3];
457 e = state[4];
458 f = state[5];
459 g = state[6];
460 h = state[7];
462 j = 0;
463 do {
464 BE_8_TO_32(W256[j], data);
465 data += 4;
466 /* Apply the SHA-256 compression function to update a..h */
467 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
468 T2 = Sigma0_256(a) + Maj(a, b, c);
469 h = g;
470 g = f;
471 f = e;
472 e = d + T1;
473 d = c;
474 c = b;
475 b = a;
476 a = T1 + T2;
478 j++;
479 } while (j < 16);
481 do {
482 /* Part of the message block expansion: */
483 s0 = W256[(j+1)&0x0f];
484 s0 = sigma0_256(s0);
485 s1 = W256[(j+14)&0x0f];
486 s1 = sigma1_256(s1);
488 /* Apply the SHA-256 compression function to update a..h */
489 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
490 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
491 T2 = Sigma0_256(a) + Maj(a, b, c);
492 h = g;
493 g = f;
494 f = e;
495 e = d + T1;
496 d = c;
497 c = b;
498 b = a;
499 a = T1 + T2;
501 j++;
502 } while (j < 64);
504 /* Compute the current intermediate hash value */
505 state[0] += a;
506 state[1] += b;
507 state[2] += c;
508 state[3] += d;
509 state[4] += e;
510 state[5] += f;
511 state[6] += g;
512 state[7] += h;
514 /* Clean up */
515 a = b = c = d = e = f = g = h = T1 = T2 = 0;
518 #endif /* SHA2_UNROLL_TRANSFORM */
519 DEF_WEAK(SHA256Transform);
521 void
522 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
524 u_int64_t freespace, usedspace;
526 /* Calling with no data is valid (we do nothing) */
527 if (len == 0)
528 return;
530 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
531 if (usedspace > 0) {
532 /* Calculate how much free space is available in the buffer */
533 freespace = SHA256_BLOCK_LENGTH - usedspace;
535 if (len >= freespace) {
536 /* Fill the buffer completely and process it */
537 memcpy(&context->buffer[usedspace], data, freespace);
538 context->bitcount[0] += freespace << 3;
539 len -= freespace;
540 data += freespace;
541 SHA256Transform(context->state.st32, context->buffer);
542 } else {
543 /* The buffer is not yet full */
544 memcpy(&context->buffer[usedspace], data, len);
545 context->bitcount[0] += (u_int64_t)len << 3;
546 /* Clean up: */
547 usedspace = freespace = 0;
548 return;
551 while (len >= SHA256_BLOCK_LENGTH) {
552 /* Process as many complete blocks as we can */
553 SHA256Transform(context->state.st32, data);
554 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
555 len -= SHA256_BLOCK_LENGTH;
556 data += SHA256_BLOCK_LENGTH;
558 if (len > 0) {
559 /* There's left-overs, so save 'em */
560 memcpy(context->buffer, data, len);
561 context->bitcount[0] += len << 3;
563 /* Clean up: */
564 usedspace = freespace = 0;
566 DEF_WEAK(SHA256Update);
568 void
569 SHA256Pad(SHA2_CTX *context)
571 unsigned int usedspace;
573 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
574 if (usedspace > 0) {
575 /* Begin padding with a 1 bit: */
576 context->buffer[usedspace++] = 0x80;
578 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
579 /* Set-up for the last transform: */
580 memset(&context->buffer[usedspace], 0,
581 SHA256_SHORT_BLOCK_LENGTH - usedspace);
582 } else {
583 if (usedspace < SHA256_BLOCK_LENGTH) {
584 memset(&context->buffer[usedspace], 0,
585 SHA256_BLOCK_LENGTH - usedspace);
587 /* Do second-to-last transform: */
588 SHA256Transform(context->state.st32, context->buffer);
590 /* Prepare for last transform: */
591 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
593 } else {
594 /* Set-up for the last transform: */
595 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
597 /* Begin padding with a 1 bit: */
598 *context->buffer = 0x80;
600 /* Store the length of input data (in bits) in big endian format: */
601 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
602 context->bitcount[0]);
604 /* Final transform: */
605 SHA256Transform(context->state.st32, context->buffer);
607 /* Clean up: */
608 usedspace = 0;
610 DEF_WEAK(SHA256Pad);
612 void
613 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
615 SHA256Pad(context);
617 #if BYTE_ORDER == LITTLE_ENDIAN
618 int i;
620 /* Convert TO host byte order */
621 for (i = 0; i < 8; i++)
622 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
623 #else
624 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
625 #endif
626 explicit_bzero(context, sizeof(*context));
628 DEF_WEAK(SHA256Final);
630 #if 0
631 /*** SHA-512: *********************************************************/
632 void
633 SHA512Init(SHA2_CTX *context)
635 memcpy(context->state.st64, sha512_initial_hash_value,
636 sizeof(sha512_initial_hash_value));
637 memset(context->buffer, 0, sizeof(context->buffer));
638 context->bitcount[0] = context->bitcount[1] = 0;
640 DEF_WEAK(SHA512Init);
642 #ifdef SHA2_UNROLL_TRANSFORM
644 /* Unrolled SHA-512 round macros: */
646 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
647 BE_8_TO_64(W512[j], data); \
648 data += 8; \
649 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
650 (d) += T1; \
651 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
652 j++; \
653 } while(0)
656 #define ROUND512(a,b,c,d,e,f,g,h) do { \
657 s0 = W512[(j+1)&0x0f]; \
658 s0 = sigma0_512(s0); \
659 s1 = W512[(j+14)&0x0f]; \
660 s1 = sigma1_512(s1); \
661 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
662 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
663 (d) += T1; \
664 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
665 j++; \
666 } while(0)
668 void
669 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
671 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
672 u_int64_t T1, W512[16];
673 int j;
675 /* Initialize registers with the prev. intermediate value */
676 a = state[0];
677 b = state[1];
678 c = state[2];
679 d = state[3];
680 e = state[4];
681 f = state[5];
682 g = state[6];
683 h = state[7];
685 j = 0;
686 do {
687 /* Rounds 0 to 15 (unrolled): */
688 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
689 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
690 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
691 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
692 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
693 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
694 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
695 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
696 } while (j < 16);
698 /* Now for the remaining rounds up to 79: */
699 do {
700 ROUND512(a,b,c,d,e,f,g,h);
701 ROUND512(h,a,b,c,d,e,f,g);
702 ROUND512(g,h,a,b,c,d,e,f);
703 ROUND512(f,g,h,a,b,c,d,e);
704 ROUND512(e,f,g,h,a,b,c,d);
705 ROUND512(d,e,f,g,h,a,b,c);
706 ROUND512(c,d,e,f,g,h,a,b);
707 ROUND512(b,c,d,e,f,g,h,a);
708 } while (j < 80);
710 /* Compute the current intermediate hash value */
711 state[0] += a;
712 state[1] += b;
713 state[2] += c;
714 state[3] += d;
715 state[4] += e;
716 state[5] += f;
717 state[6] += g;
718 state[7] += h;
720 /* Clean up */
721 a = b = c = d = e = f = g = h = T1 = 0;
724 #else /* SHA2_UNROLL_TRANSFORM */
726 void
727 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
729 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
730 u_int64_t T1, T2, W512[16];
731 int j;
733 /* Initialize registers with the prev. intermediate value */
734 a = state[0];
735 b = state[1];
736 c = state[2];
737 d = state[3];
738 e = state[4];
739 f = state[5];
740 g = state[6];
741 h = state[7];
743 j = 0;
744 do {
745 BE_8_TO_64(W512[j], data);
746 data += 8;
747 /* Apply the SHA-512 compression function to update a..h */
748 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
749 T2 = Sigma0_512(a) + Maj(a, b, c);
750 h = g;
751 g = f;
752 f = e;
753 e = d + T1;
754 d = c;
755 c = b;
756 b = a;
757 a = T1 + T2;
759 j++;
760 } while (j < 16);
762 do {
763 /* Part of the message block expansion: */
764 s0 = W512[(j+1)&0x0f];
765 s0 = sigma0_512(s0);
766 s1 = W512[(j+14)&0x0f];
767 s1 = sigma1_512(s1);
769 /* Apply the SHA-512 compression function to update a..h */
770 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
771 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
772 T2 = Sigma0_512(a) + Maj(a, b, c);
773 h = g;
774 g = f;
775 f = e;
776 e = d + T1;
777 d = c;
778 c = b;
779 b = a;
780 a = T1 + T2;
782 j++;
783 } while (j < 80);
785 /* Compute the current intermediate hash value */
786 state[0] += a;
787 state[1] += b;
788 state[2] += c;
789 state[3] += d;
790 state[4] += e;
791 state[5] += f;
792 state[6] += g;
793 state[7] += h;
795 /* Clean up */
796 a = b = c = d = e = f = g = h = T1 = T2 = 0;
799 #endif /* SHA2_UNROLL_TRANSFORM */
800 DEF_WEAK(SHA512Transform);
802 void
803 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
805 size_t freespace, usedspace;
807 /* Calling with no data is valid (we do nothing) */
808 if (len == 0)
809 return;
811 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
812 if (usedspace > 0) {
813 /* Calculate how much free space is available in the buffer */
814 freespace = SHA512_BLOCK_LENGTH - usedspace;
816 if (len >= freespace) {
817 /* Fill the buffer completely and process it */
818 memcpy(&context->buffer[usedspace], data, freespace);
819 ADDINC128(context->bitcount, freespace << 3);
820 len -= freespace;
821 data += freespace;
822 SHA512Transform(context->state.st64, context->buffer);
823 } else {
824 /* The buffer is not yet full */
825 memcpy(&context->buffer[usedspace], data, len);
826 ADDINC128(context->bitcount, len << 3);
827 /* Clean up: */
828 usedspace = freespace = 0;
829 return;
832 while (len >= SHA512_BLOCK_LENGTH) {
833 /* Process as many complete blocks as we can */
834 SHA512Transform(context->state.st64, data);
835 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
836 len -= SHA512_BLOCK_LENGTH;
837 data += SHA512_BLOCK_LENGTH;
839 if (len > 0) {
840 /* There's left-overs, so save 'em */
841 memcpy(context->buffer, data, len);
842 ADDINC128(context->bitcount, len << 3);
844 /* Clean up: */
845 usedspace = freespace = 0;
847 DEF_WEAK(SHA512Update);
849 void
850 SHA512Pad(SHA2_CTX *context)
852 unsigned int usedspace;
854 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
855 if (usedspace > 0) {
856 /* Begin padding with a 1 bit: */
857 context->buffer[usedspace++] = 0x80;
859 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
860 /* Set-up for the last transform: */
861 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
862 } else {
863 if (usedspace < SHA512_BLOCK_LENGTH) {
864 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
866 /* Do second-to-last transform: */
867 SHA512Transform(context->state.st64, context->buffer);
869 /* And set-up for the last transform: */
870 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
872 } else {
873 /* Prepare for final transform: */
874 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
876 /* Begin padding with a 1 bit: */
877 *context->buffer = 0x80;
879 /* Store the length of input data (in bits) in big endian format: */
880 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
881 context->bitcount[1]);
882 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
883 context->bitcount[0]);
885 /* Final transform: */
886 SHA512Transform(context->state.st64, context->buffer);
888 /* Clean up: */
889 usedspace = 0;
891 DEF_WEAK(SHA512Pad);
893 void
894 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
896 SHA512Pad(context);
898 #if BYTE_ORDER == LITTLE_ENDIAN
899 int i;
901 /* Convert TO host byte order */
902 for (i = 0; i < 8; i++)
903 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
904 #else
905 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
906 #endif
907 explicit_bzero(context, sizeof(*context));
909 DEF_WEAK(SHA512Final);
911 #if !defined(SHA2_SMALL)
913 /*** SHA-384: *********************************************************/
914 void
915 SHA384Init(SHA2_CTX *context)
917 memcpy(context->state.st64, sha384_initial_hash_value,
918 sizeof(sha384_initial_hash_value));
919 memset(context->buffer, 0, sizeof(context->buffer));
920 context->bitcount[0] = context->bitcount[1] = 0;
922 DEF_WEAK(SHA384Init);
924 MAKE_CLONE(SHA384Transform, SHA512Transform);
925 MAKE_CLONE(SHA384Update, SHA512Update);
926 MAKE_CLONE(SHA384Pad, SHA512Pad);
927 DEF_WEAK(SHA384Transform);
928 DEF_WEAK(SHA384Update);
929 DEF_WEAK(SHA384Pad);
931 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
932 void
933 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
935 SHA512Transform(state, data);
938 void
939 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
941 SHA512Update(context, data, len);
944 void
945 SHA384Pad(SHA2_CTX *context)
947 SHA512Pad(context);
950 void
951 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
953 SHA384Pad(context);
955 #if BYTE_ORDER == LITTLE_ENDIAN
956 int i;
958 /* Convert TO host byte order */
959 for (i = 0; i < 6; i++)
960 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
961 #else
962 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
963 #endif
964 /* Zero out state data */
965 explicit_bzero(context, sizeof(*context));
967 DEF_WEAK(SHA384Final);
970 /*** SHA-512/256: *********************************************************/
971 void
972 SHA512_256Init(SHA2_CTX *context)
974 memcpy(context->state.st64, sha512_256_initial_hash_value,
975 sizeof(sha512_256_initial_hash_value));
976 memset(context->buffer, 0, sizeof(context->buffer));
977 context->bitcount[0] = context->bitcount[1] = 0;
979 DEF_WEAK(SHA512_256Init);
981 MAKE_CLONE(SHA512_256Transform, SHA512Transform);
982 MAKE_CLONE(SHA512_256Update, SHA512Update);
983 MAKE_CLONE(SHA512_256Pad, SHA512Pad);
984 DEF_WEAK(SHA512_256Transform);
985 DEF_WEAK(SHA512_256Update);
986 DEF_WEAK(SHA512_256Pad);
988 void
989 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
991 SHA512_256Pad(context);
993 #if BYTE_ORDER == LITTLE_ENDIAN
994 int i;
996 /* Convert TO host byte order */
997 for (i = 0; i < 4; i++)
998 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
999 #else
1000 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1001 #endif
1002 /* Zero out state data */
1003 explicit_bzero(context, sizeof(*context));
1005 DEF_WEAK(SHA512_256Final);
1006 #endif /* !defined(SHA2_SMALL) */
1007 #endif /* 0 */
1009 #endif /* HAVE_SHA{256,384,512}UPDATE */