Blob


1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
3 /*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
39 #include <string.h>
41 #include "got_compat.h"
43 #define DEF_WEAK(x) void __ssh_compat_weak_##x(void)
45 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
46 !defined(HAVE_SHA512UPDATE)
48 /* no-op out, similar to DEF_WEAK but only needed here */
49 #define MAKE_CLONE(x, y) void __ssh_compat_make_clone_##x_##y(void)
51 /*
52 * UNROLLED TRANSFORM LOOP NOTE:
53 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
54 * loop version for the hash transform rounds (defined using macros
55 * later in this file). Either define on the command line, for example:
56 *
57 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
58 *
59 * or define below:
60 *
61 * #define SHA2_UNROLL_TRANSFORM
62 *
63 */
64 #ifndef SHA2_SMALL
65 #if defined(__amd64__) || defined(__i386__)
66 #define SHA2_UNROLL_TRANSFORM
67 #endif
68 #endif
70 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
71 /*
72 * BYTE_ORDER NOTE:
73 *
74 * Please make sure that your system defines BYTE_ORDER. If your
75 * architecture is little-endian, make sure it also defines
76 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
77 * equivalent.
78 *
79 * If your system does not define the above, then you can do so by
80 * hand like this:
81 *
82 * #define LITTLE_ENDIAN 1234
83 * #define BIG_ENDIAN 4321
84 *
85 * And for little-endian machines, add:
86 *
87 * #define BYTE_ORDER LITTLE_ENDIAN
88 *
89 * Or for big-endian machines:
90 *
91 * #define BYTE_ORDER BIG_ENDIAN
92 *
93 * The FreeBSD machine this was written on defines BYTE_ORDER
94 * appropriately by including <sys/types.h> (which in turn includes
95 * <machine/endian.h> where the appropriate definitions are actually
96 * made).
97 */
98 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
99 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
100 #endif
103 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
104 /* NOTE: Most of these are in sha2.h */
105 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
106 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
107 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
108 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
110 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
111 #define BE_8_TO_32(dst, cp) do { \
112 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
113 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
114 } while(0)
116 #define BE_8_TO_64(dst, cp) do { \
117 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
118 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
119 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
120 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
121 } while (0)
123 #define BE_64_TO_8(cp, src) do { \
124 (cp)[0] = (src) >> 56; \
125 (cp)[1] = (src) >> 48; \
126 (cp)[2] = (src) >> 40; \
127 (cp)[3] = (src) >> 32; \
128 (cp)[4] = (src) >> 24; \
129 (cp)[5] = (src) >> 16; \
130 (cp)[6] = (src) >> 8; \
131 (cp)[7] = (src); \
132 } while (0)
134 #define BE_32_TO_8(cp, src) do { \
135 (cp)[0] = (src) >> 24; \
136 (cp)[1] = (src) >> 16; \
137 (cp)[2] = (src) >> 8; \
138 (cp)[3] = (src); \
139 } while (0)
141 /*
142 * Macro for incrementally adding the unsigned 64-bit integer n to the
143 * unsigned 128-bit integer (represented using a two-element array of
144 * 64-bit words):
145 */
146 #define ADDINC128(w,n) do { \
147 (w)[0] += (u_int64_t)(n); \
148 if ((w)[0] < (n)) { \
149 (w)[1]++; \
150 } \
151 } while (0)
153 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
154 /*
155 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
157 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
158 * S is a ROTATION) because the SHA-224/256/384/512 description document
159 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
160 * same "backwards" definition.
161 */
162 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
163 #define R(b,x) ((x) >> (b))
164 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
165 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
166 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
167 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
169 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
170 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
171 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
173 /* Four of six logical functions used in SHA-224 and SHA-256: */
174 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
175 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
176 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
177 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
179 /* Four of six logical functions used in SHA-384 and SHA-512: */
180 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
181 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
182 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
183 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
186 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
187 /* Hash constant words K for SHA-224 and SHA-256: */
188 static const u_int32_t K256[64] = {
189 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
190 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
191 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
192 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
193 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
194 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
195 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
196 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
197 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
198 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
199 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
200 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
201 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
202 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
203 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
204 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
205 };
207 /* Initial hash value H for SHA-256: */
208 static const u_int32_t sha256_initial_hash_value[8] = {
209 0x6a09e667UL,
210 0xbb67ae85UL,
211 0x3c6ef372UL,
212 0xa54ff53aUL,
213 0x510e527fUL,
214 0x9b05688cUL,
215 0x1f83d9abUL,
216 0x5be0cd19UL
217 };
219 /* Hash constant words K for SHA-384 and SHA-512: */
220 static const u_int64_t K512[80] = {
221 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
222 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
223 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
224 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
225 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
226 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
227 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
228 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
229 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
230 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
231 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
232 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
233 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
234 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
235 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
236 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
237 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
238 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
239 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
240 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
241 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
242 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
243 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
244 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
245 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
246 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
247 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
248 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
249 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
250 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
251 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
252 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
253 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
254 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
255 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
256 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
257 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
258 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
259 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
260 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
261 };
263 /* Initial hash value H for SHA-512 */
264 static const u_int64_t sha512_initial_hash_value[8] = {
265 0x6a09e667f3bcc908ULL,
266 0xbb67ae8584caa73bULL,
267 0x3c6ef372fe94f82bULL,
268 0xa54ff53a5f1d36f1ULL,
269 0x510e527fade682d1ULL,
270 0x9b05688c2b3e6c1fULL,
271 0x1f83d9abfb41bd6bULL,
272 0x5be0cd19137e2179ULL
273 };
275 #if !defined(SHA2_SMALL)
276 #if 0
277 /* Initial hash value H for SHA-224: */
278 static const u_int32_t sha224_initial_hash_value[8] = {
279 0xc1059ed8UL,
280 0x367cd507UL,
281 0x3070dd17UL,
282 0xf70e5939UL,
283 0xffc00b31UL,
284 0x68581511UL,
285 0x64f98fa7UL,
286 0xbefa4fa4UL
287 };
288 #endif /* 0 */
290 /* Initial hash value H for SHA-384 */
291 static const u_int64_t sha384_initial_hash_value[8] = {
292 0xcbbb9d5dc1059ed8ULL,
293 0x629a292a367cd507ULL,
294 0x9159015a3070dd17ULL,
295 0x152fecd8f70e5939ULL,
296 0x67332667ffc00b31ULL,
297 0x8eb44a8768581511ULL,
298 0xdb0c2e0d64f98fa7ULL,
299 0x47b5481dbefa4fa4ULL
300 };
302 #if 0
303 /* Initial hash value H for SHA-512-256 */
304 static const u_int64_t sha512_256_initial_hash_value[8] = {
305 0x22312194fc2bf72cULL,
306 0x9f555fa3c84c64c2ULL,
307 0x2393b86b6f53b151ULL,
308 0x963877195940eabdULL,
309 0x96283ee2a88effe3ULL,
310 0xbe5e1e2553863992ULL,
311 0x2b0199fc2c85b8aaULL,
312 0x0eb72ddc81c52ca2ULL
313 };
315 /*** SHA-224: *********************************************************/
316 void
317 SHA224Init(SHA2_CTX *context)
319 memcpy(context->state.st32, sha224_initial_hash_value,
320 sizeof(sha224_initial_hash_value));
321 memset(context->buffer, 0, sizeof(context->buffer));
322 context->bitcount[0] = 0;
324 DEF_WEAK(SHA224Init);
326 MAKE_CLONE(SHA224Transform, SHA256Transform);
327 MAKE_CLONE(SHA224Update, SHA256Update);
328 MAKE_CLONE(SHA224Pad, SHA256Pad);
329 DEF_WEAK(SHA224Transform);
330 DEF_WEAK(SHA224Update);
331 DEF_WEAK(SHA224Pad);
333 void
334 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
336 SHA224Pad(context);
338 #if BYTE_ORDER == LITTLE_ENDIAN
339 int i;
341 /* Convert TO host byte order */
342 for (i = 0; i < 7; i++)
343 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
344 #else
345 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
346 #endif
347 explicit_bzero(context, sizeof(*context));
349 DEF_WEAK(SHA224Final);
350 #endif /* !defined(SHA2_SMALL) */
351 #endif /* 0 */
353 /*** SHA-256: *********************************************************/
354 void
355 SHA256Init(SHA2_CTX *context)
357 memcpy(context->state.st32, sha256_initial_hash_value,
358 sizeof(sha256_initial_hash_value));
359 memset(context->buffer, 0, sizeof(context->buffer));
360 context->bitcount[0] = 0;
362 DEF_WEAK(SHA256Init);
364 #ifdef SHA2_UNROLL_TRANSFORM
366 /* Unrolled SHA-256 round macros: */
368 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
369 BE_8_TO_32(W256[j], data); \
370 data += 4; \
371 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
372 (d) += T1; \
373 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
374 j++; \
375 } while(0)
377 #define ROUND256(a,b,c,d,e,f,g,h) do { \
378 s0 = W256[(j+1)&0x0f]; \
379 s0 = sigma0_256(s0); \
380 s1 = W256[(j+14)&0x0f]; \
381 s1 = sigma1_256(s1); \
382 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
383 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
384 (d) += T1; \
385 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
386 j++; \
387 } while(0)
389 void
390 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
392 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
393 u_int32_t T1, W256[16];
394 int j;
396 /* Initialize registers with the prev. intermediate value */
397 a = state[0];
398 b = state[1];
399 c = state[2];
400 d = state[3];
401 e = state[4];
402 f = state[5];
403 g = state[6];
404 h = state[7];
406 j = 0;
407 do {
408 /* Rounds 0 to 15 (unrolled): */
409 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
410 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
411 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
412 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
413 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
414 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
415 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
416 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
417 } while (j < 16);
419 /* Now for the remaining rounds up to 63: */
420 do {
421 ROUND256(a,b,c,d,e,f,g,h);
422 ROUND256(h,a,b,c,d,e,f,g);
423 ROUND256(g,h,a,b,c,d,e,f);
424 ROUND256(f,g,h,a,b,c,d,e);
425 ROUND256(e,f,g,h,a,b,c,d);
426 ROUND256(d,e,f,g,h,a,b,c);
427 ROUND256(c,d,e,f,g,h,a,b);
428 ROUND256(b,c,d,e,f,g,h,a);
429 } while (j < 64);
431 /* Compute the current intermediate hash value */
432 state[0] += a;
433 state[1] += b;
434 state[2] += c;
435 state[3] += d;
436 state[4] += e;
437 state[5] += f;
438 state[6] += g;
439 state[7] += h;
441 /* Clean up */
442 a = b = c = d = e = f = g = h = T1 = 0;
445 #else /* SHA2_UNROLL_TRANSFORM */
447 void
448 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
450 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
451 u_int32_t T1, T2, W256[16];
452 int j;
454 /* Initialize registers with the prev. intermediate value */
455 a = state[0];
456 b = state[1];
457 c = state[2];
458 d = state[3];
459 e = state[4];
460 f = state[5];
461 g = state[6];
462 h = state[7];
464 j = 0;
465 do {
466 BE_8_TO_32(W256[j], data);
467 data += 4;
468 /* Apply the SHA-256 compression function to update a..h */
469 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
470 T2 = Sigma0_256(a) + Maj(a, b, c);
471 h = g;
472 g = f;
473 f = e;
474 e = d + T1;
475 d = c;
476 c = b;
477 b = a;
478 a = T1 + T2;
480 j++;
481 } while (j < 16);
483 do {
484 /* Part of the message block expansion: */
485 s0 = W256[(j+1)&0x0f];
486 s0 = sigma0_256(s0);
487 s1 = W256[(j+14)&0x0f];
488 s1 = sigma1_256(s1);
490 /* Apply the SHA-256 compression function to update a..h */
491 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
492 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
493 T2 = Sigma0_256(a) + Maj(a, b, c);
494 h = g;
495 g = f;
496 f = e;
497 e = d + T1;
498 d = c;
499 c = b;
500 b = a;
501 a = T1 + T2;
503 j++;
504 } while (j < 64);
506 /* Compute the current intermediate hash value */
507 state[0] += a;
508 state[1] += b;
509 state[2] += c;
510 state[3] += d;
511 state[4] += e;
512 state[5] += f;
513 state[6] += g;
514 state[7] += h;
516 /* Clean up */
517 a = b = c = d = e = f = g = h = T1 = T2 = 0;
520 #endif /* SHA2_UNROLL_TRANSFORM */
521 DEF_WEAK(SHA256Transform);
523 void
524 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
526 u_int64_t freespace, usedspace;
528 /* Calling with no data is valid (we do nothing) */
529 if (len == 0)
530 return;
532 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
533 if (usedspace > 0) {
534 /* Calculate how much free space is available in the buffer */
535 freespace = SHA256_BLOCK_LENGTH - usedspace;
537 if (len >= freespace) {
538 /* Fill the buffer completely and process it */
539 memcpy(&context->buffer[usedspace], data, freespace);
540 context->bitcount[0] += freespace << 3;
541 len -= freespace;
542 data += freespace;
543 SHA256Transform(context->state.st32, context->buffer);
544 } else {
545 /* The buffer is not yet full */
546 memcpy(&context->buffer[usedspace], data, len);
547 context->bitcount[0] += (u_int64_t)len << 3;
548 /* Clean up: */
549 usedspace = freespace = 0;
550 return;
553 while (len >= SHA256_BLOCK_LENGTH) {
554 /* Process as many complete blocks as we can */
555 SHA256Transform(context->state.st32, data);
556 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
557 len -= SHA256_BLOCK_LENGTH;
558 data += SHA256_BLOCK_LENGTH;
560 if (len > 0) {
561 /* There's left-overs, so save 'em */
562 memcpy(context->buffer, data, len);
563 context->bitcount[0] += len << 3;
565 /* Clean up: */
566 usedspace = freespace = 0;
568 DEF_WEAK(SHA256Update);
570 void
571 SHA256Pad(SHA2_CTX *context)
573 unsigned int usedspace;
575 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
576 if (usedspace > 0) {
577 /* Begin padding with a 1 bit: */
578 context->buffer[usedspace++] = 0x80;
580 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
581 /* Set-up for the last transform: */
582 memset(&context->buffer[usedspace], 0,
583 SHA256_SHORT_BLOCK_LENGTH - usedspace);
584 } else {
585 if (usedspace < SHA256_BLOCK_LENGTH) {
586 memset(&context->buffer[usedspace], 0,
587 SHA256_BLOCK_LENGTH - usedspace);
589 /* Do second-to-last transform: */
590 SHA256Transform(context->state.st32, context->buffer);
592 /* Prepare for last transform: */
593 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
595 } else {
596 /* Set-up for the last transform: */
597 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
599 /* Begin padding with a 1 bit: */
600 *context->buffer = 0x80;
602 /* Store the length of input data (in bits) in big endian format: */
603 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
604 context->bitcount[0]);
606 /* Final transform: */
607 SHA256Transform(context->state.st32, context->buffer);
609 /* Clean up: */
610 usedspace = 0;
612 DEF_WEAK(SHA256Pad);
614 void
615 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
617 SHA256Pad(context);
619 #if BYTE_ORDER == LITTLE_ENDIAN
620 int i;
622 /* Convert TO host byte order */
623 for (i = 0; i < 8; i++)
624 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
625 #else
626 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
627 #endif
628 explicit_bzero(context, sizeof(*context));
630 DEF_WEAK(SHA256Final);
633 /*** SHA-512: *********************************************************/
634 void
635 SHA512Init(SHA2_CTX *context)
637 memcpy(context->state.st64, sha512_initial_hash_value,
638 sizeof(sha512_initial_hash_value));
639 memset(context->buffer, 0, sizeof(context->buffer));
640 context->bitcount[0] = context->bitcount[1] = 0;
642 DEF_WEAK(SHA512Init);
644 #ifdef SHA2_UNROLL_TRANSFORM
646 /* Unrolled SHA-512 round macros: */
648 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
649 BE_8_TO_64(W512[j], data); \
650 data += 8; \
651 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
652 (d) += T1; \
653 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
654 j++; \
655 } while(0)
658 #define ROUND512(a,b,c,d,e,f,g,h) do { \
659 s0 = W512[(j+1)&0x0f]; \
660 s0 = sigma0_512(s0); \
661 s1 = W512[(j+14)&0x0f]; \
662 s1 = sigma1_512(s1); \
663 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
664 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
665 (d) += T1; \
666 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
667 j++; \
668 } while(0)
670 void
671 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
673 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
674 u_int64_t T1, W512[16];
675 int j;
677 /* Initialize registers with the prev. intermediate value */
678 a = state[0];
679 b = state[1];
680 c = state[2];
681 d = state[3];
682 e = state[4];
683 f = state[5];
684 g = state[6];
685 h = state[7];
687 j = 0;
688 do {
689 /* Rounds 0 to 15 (unrolled): */
690 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
691 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
692 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
693 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
694 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
695 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
696 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
697 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
698 } while (j < 16);
700 /* Now for the remaining rounds up to 79: */
701 do {
702 ROUND512(a,b,c,d,e,f,g,h);
703 ROUND512(h,a,b,c,d,e,f,g);
704 ROUND512(g,h,a,b,c,d,e,f);
705 ROUND512(f,g,h,a,b,c,d,e);
706 ROUND512(e,f,g,h,a,b,c,d);
707 ROUND512(d,e,f,g,h,a,b,c);
708 ROUND512(c,d,e,f,g,h,a,b);
709 ROUND512(b,c,d,e,f,g,h,a);
710 } while (j < 80);
712 /* Compute the current intermediate hash value */
713 state[0] += a;
714 state[1] += b;
715 state[2] += c;
716 state[3] += d;
717 state[4] += e;
718 state[5] += f;
719 state[6] += g;
720 state[7] += h;
722 /* Clean up */
723 a = b = c = d = e = f = g = h = T1 = 0;
726 #else /* SHA2_UNROLL_TRANSFORM */
728 void
729 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
731 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
732 u_int64_t T1, T2, W512[16];
733 int j;
735 /* Initialize registers with the prev. intermediate value */
736 a = state[0];
737 b = state[1];
738 c = state[2];
739 d = state[3];
740 e = state[4];
741 f = state[5];
742 g = state[6];
743 h = state[7];
745 j = 0;
746 do {
747 BE_8_TO_64(W512[j], data);
748 data += 8;
749 /* Apply the SHA-512 compression function to update a..h */
750 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
751 T2 = Sigma0_512(a) + Maj(a, b, c);
752 h = g;
753 g = f;
754 f = e;
755 e = d + T1;
756 d = c;
757 c = b;
758 b = a;
759 a = T1 + T2;
761 j++;
762 } while (j < 16);
764 do {
765 /* Part of the message block expansion: */
766 s0 = W512[(j+1)&0x0f];
767 s0 = sigma0_512(s0);
768 s1 = W512[(j+14)&0x0f];
769 s1 = sigma1_512(s1);
771 /* Apply the SHA-512 compression function to update a..h */
772 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
773 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
774 T2 = Sigma0_512(a) + Maj(a, b, c);
775 h = g;
776 g = f;
777 f = e;
778 e = d + T1;
779 d = c;
780 c = b;
781 b = a;
782 a = T1 + T2;
784 j++;
785 } while (j < 80);
787 /* Compute the current intermediate hash value */
788 state[0] += a;
789 state[1] += b;
790 state[2] += c;
791 state[3] += d;
792 state[4] += e;
793 state[5] += f;
794 state[6] += g;
795 state[7] += h;
797 /* Clean up */
798 a = b = c = d = e = f = g = h = T1 = T2 = 0;
801 #endif /* SHA2_UNROLL_TRANSFORM */
802 DEF_WEAK(SHA512Transform);
804 void
805 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
807 size_t freespace, usedspace;
809 /* Calling with no data is valid (we do nothing) */
810 if (len == 0)
811 return;
813 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
814 if (usedspace > 0) {
815 /* Calculate how much free space is available in the buffer */
816 freespace = SHA512_BLOCK_LENGTH - usedspace;
818 if (len >= freespace) {
819 /* Fill the buffer completely and process it */
820 memcpy(&context->buffer[usedspace], data, freespace);
821 ADDINC128(context->bitcount, freespace << 3);
822 len -= freespace;
823 data += freespace;
824 SHA512Transform(context->state.st64, context->buffer);
825 } else {
826 /* The buffer is not yet full */
827 memcpy(&context->buffer[usedspace], data, len);
828 ADDINC128(context->bitcount, len << 3);
829 /* Clean up: */
830 usedspace = freespace = 0;
831 return;
834 while (len >= SHA512_BLOCK_LENGTH) {
835 /* Process as many complete blocks as we can */
836 SHA512Transform(context->state.st64, data);
837 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
838 len -= SHA512_BLOCK_LENGTH;
839 data += SHA512_BLOCK_LENGTH;
841 if (len > 0) {
842 /* There's left-overs, so save 'em */
843 memcpy(context->buffer, data, len);
844 ADDINC128(context->bitcount, len << 3);
846 /* Clean up: */
847 usedspace = freespace = 0;
849 DEF_WEAK(SHA512Update);
851 void
852 SHA512Pad(SHA2_CTX *context)
854 unsigned int usedspace;
856 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
857 if (usedspace > 0) {
858 /* Begin padding with a 1 bit: */
859 context->buffer[usedspace++] = 0x80;
861 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
862 /* Set-up for the last transform: */
863 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
864 } else {
865 if (usedspace < SHA512_BLOCK_LENGTH) {
866 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
868 /* Do second-to-last transform: */
869 SHA512Transform(context->state.st64, context->buffer);
871 /* And set-up for the last transform: */
872 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
874 } else {
875 /* Prepare for final transform: */
876 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
878 /* Begin padding with a 1 bit: */
879 *context->buffer = 0x80;
881 /* Store the length of input data (in bits) in big endian format: */
882 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
883 context->bitcount[1]);
884 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
885 context->bitcount[0]);
887 /* Final transform: */
888 SHA512Transform(context->state.st64, context->buffer);
890 /* Clean up: */
891 usedspace = 0;
893 DEF_WEAK(SHA512Pad);
895 void
896 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
898 SHA512Pad(context);
900 #if BYTE_ORDER == LITTLE_ENDIAN
901 int i;
903 /* Convert TO host byte order */
904 for (i = 0; i < 8; i++)
905 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
906 #else
907 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
908 #endif
909 explicit_bzero(context, sizeof(*context));
911 DEF_WEAK(SHA512Final);
913 #if !defined(SHA2_SMALL)
915 /*** SHA-384: *********************************************************/
916 void
917 SHA384Init(SHA2_CTX *context)
919 memcpy(context->state.st64, sha384_initial_hash_value,
920 sizeof(sha384_initial_hash_value));
921 memset(context->buffer, 0, sizeof(context->buffer));
922 context->bitcount[0] = context->bitcount[1] = 0;
924 DEF_WEAK(SHA384Init);
926 MAKE_CLONE(SHA384Transform, SHA512Transform);
927 MAKE_CLONE(SHA384Update, SHA512Update);
928 MAKE_CLONE(SHA384Pad, SHA512Pad);
929 DEF_WEAK(SHA384Transform);
930 DEF_WEAK(SHA384Update);
931 DEF_WEAK(SHA384Pad);
933 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
934 void
935 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
937 SHA512Transform(state, data);
940 void
941 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
943 SHA512Update(context, data, len);
946 void
947 SHA384Pad(SHA2_CTX *context)
949 SHA512Pad(context);
952 void
953 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
955 SHA384Pad(context);
957 #if BYTE_ORDER == LITTLE_ENDIAN
958 int i;
960 /* Convert TO host byte order */
961 for (i = 0; i < 6; i++)
962 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
963 #else
964 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
965 #endif
966 /* Zero out state data */
967 explicit_bzero(context, sizeof(*context));
969 DEF_WEAK(SHA384Final);
971 #if 0
972 /*** SHA-512/256: *********************************************************/
973 void
974 SHA512_256Init(SHA2_CTX *context)
976 memcpy(context->state.st64, sha512_256_initial_hash_value,
977 sizeof(sha512_256_initial_hash_value));
978 memset(context->buffer, 0, sizeof(context->buffer));
979 context->bitcount[0] = context->bitcount[1] = 0;
981 DEF_WEAK(SHA512_256Init);
983 MAKE_CLONE(SHA512_256Transform, SHA512Transform);
984 MAKE_CLONE(SHA512_256Update, SHA512Update);
985 MAKE_CLONE(SHA512_256Pad, SHA512Pad);
986 DEF_WEAK(SHA512_256Transform);
987 DEF_WEAK(SHA512_256Update);
988 DEF_WEAK(SHA512_256Pad);
990 void
991 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
993 SHA512_256Pad(context);
995 #if BYTE_ORDER == LITTLE_ENDIAN
996 int i;
998 /* Convert TO host byte order */
999 for (i = 0; i < 4; i++)
1000 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
1001 #else
1002 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1003 #endif
1004 /* Zero out state data */
1005 explicit_bzero(context, sizeof(*context));
1007 DEF_WEAK(SHA512_256Final);
1008 #endif /* !defined(SHA2_SMALL) */
1009 #endif /* 0 */
1011 #endif /* HAVE_SHA{256,384,512}UPDATE */