Blob


1 /* Myers diff algorithm implementation, invented by Eugene W. Myers [1].
2 * Implementations of both the Myers Divide Et Impera (using linear space)
3 * and the canonical Myers algorithm (using quadratic space). */
4 /*
5 * Copyright (c) 2020 Neels Hofmeyr <neels@hofmeyr.de>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
20 #include <inttypes.h>
21 #include <stdbool.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <stdio.h>
25 #include <errno.h>
27 #include <arraylist.h>
28 #include <diff_main.h>
30 #include "diff_internal.h"
31 #include "diff_debug.h"
33 /* Myers' diff algorithm [1] is nicely explained in [2].
34 * [1] http://www.xmailserver.org/diff2.pdf
35 * [2] https://blog.jcoglan.com/2017/02/12/the-myers-diff-algorithm-part-1/ ff.
36 *
37 * Myers approaches finding the smallest diff as a graph problem.
38 * The crux is that the original algorithm requires quadratic amount of memory:
39 * both sides' lengths added, and that squared. So if we're diffing lines of
40 * text, two files with 1000 lines each would blow up to a matrix of about
41 * 2000 * 2000 ints of state, about 16 Mb of RAM to figure out 2 kb of text.
42 * The solution is using Myers' "divide and conquer" extension algorithm, which
43 * does the original traversal from both ends of the files to reach a middle
44 * where these "snakes" touch, hence does not need to backtrace the traversal,
45 * and so gets away with only keeping a single column of that huge state matrix
46 * in memory.
47 */
49 struct diff_box {
50 unsigned int left_start;
51 unsigned int left_end;
52 unsigned int right_start;
53 unsigned int right_end;
54 };
56 /* If the two contents of a file are A B C D E and X B C Y,
57 * the Myers diff graph looks like:
58 *
59 * k0 k1
60 * \ \
61 * k-1 0 1 2 3 4 5
62 * \ A B C D E
63 * 0 o-o-o-o-o-o
64 * X | | | | | |
65 * 1 o-o-o-o-o-o
66 * B | |\| | | |
67 * 2 o-o-o-o-o-o
68 * C | | |\| | |
69 * 3 o-o-o-o-o-o
70 * Y | | | | | |\
71 * 4 o-o-o-o-o-o c1
72 * \ \
73 * c-1 c0
74 *
75 * Moving right means delete an atom from the left-hand-side,
76 * Moving down means add an atom from the right-hand-side.
77 * Diagonals indicate identical atoms on both sides, the challenge is to use as
78 * many diagonals as possible.
79 *
80 * The original Myers algorithm walks all the way from the top left to the
81 * bottom right, remembers all steps, and then backtraces to find the shortest
82 * path. However, that requires keeping the entire graph in memory, which needs
83 * quadratic space.
84 *
85 * Myers adds a variant that uses linear space -- note, not linear time, only
86 * linear space: walk forward and backward, find a meeting point in the middle,
87 * and recurse on the two separate sections. This is called "divide and
88 * conquer".
89 *
90 * d: the step number, starting with 0, a.k.a. the distance from the starting
91 * point.
92 * k: relative index in the state array for the forward scan, indicating on
93 * which diagonal through the diff graph we currently are.
94 * c: relative index in the state array for the backward scan, indicating the
95 * diagonal number from the bottom up.
96 *
97 * The "divide and conquer" traversal through the Myers graph looks like this:
98 *
99 * | d= 0 1 2 3 2 1 0
100 * ----+--------------------------------------------
101 * k= | c=
102 * 4 | 3
103 * |
104 * 3 | 3,0 5,2 2
105 * | / \
106 * 2 | 2,0 5,3 1
107 * | / \
108 * 1 | 1,0 4,3 >= 4,3 5,4<-- 0
109 * | / / \ /
110 * 0 | -->0,0 3,3 4,4 -1
111 * | \ / /
112 * -1 | 0,1 1,2 3,4 -2
113 * | \ /
114 * -2 | 0,2 -3
115 * | \
116 * | 0,3
117 * | forward-> <-backward
119 * x,y pairs here are the coordinates in the Myers graph:
120 * x = atom index in left-side source, y = atom index in the right-side source.
122 * Only one forward column and one backward column are kept in mem, each need at
123 * most left.len + 1 + right.len items. Note that each d step occupies either
124 * the even or the odd items of a column: if e.g. the previous column is in the
125 * odd items, the next column is formed in the even items, without overwriting
126 * the previous column's results.
128 * Also note that from the diagonal index k and the x coordinate, the y
129 * coordinate can be derived:
130 * y = x - k
131 * Hence the state array only needs to keep the x coordinate, i.e. the position
132 * in the left-hand file, and the y coordinate, i.e. position in the right-hand
133 * file, is derived from the index in the state array.
135 * The two traces meet at 4,3, the first step (here found in the forward
136 * traversal) where a forward position is on or past a backward traced position
137 * on the same diagonal.
139 * This divides the problem space into:
141 * 0 1 2 3 4 5
142 * A B C D E
143 * 0 o-o-o-o-o
144 * X | | | | |
145 * 1 o-o-o-o-o
146 * B | |\| | |
147 * 2 o-o-o-o-o
148 * C | | |\| |
149 * 3 o-o-o-o-*-o *: forward and backward meet here
150 * Y | |
151 * 4 o-o
153 * Doing the same on each section lead to:
155 * 0 1 2 3 4 5
156 * A B C D E
157 * 0 o-o
158 * X | |
159 * 1 o-b b: backward d=1 first reaches here (sliding up the snake)
160 * B \ f: then forward d=2 reaches here (sliding down the snake)
161 * 2 o As result, the box from b to f is found to be identical;
162 * C \ leaving a top box from 0,0 to 1,1 and a bottom trivial
163 * 3 f-o tail 3,3 to 4,3.
165 * 3 o-*
166 * Y |
167 * 4 o *: forward and backward meet here
169 * and solving the last top left box gives:
171 * 0 1 2 3 4 5
172 * A B C D E -A
173 * 0 o-o +X
174 * X | B
175 * 1 o C
176 * B \ -D
177 * 2 o -E
178 * C \ +Y
179 * 3 o-o-o
180 * Y |
181 * 4 o
183 */
185 #define xk_to_y(X, K) ((X) - (K))
186 #define xc_to_y(X, C, DELTA) ((X) - (C) + (DELTA))
187 #define k_to_c(K, DELTA) ((K) + (DELTA))
188 #define c_to_k(C, DELTA) ((C) - (DELTA))
190 /* Do one forwards step in the "divide and conquer" graph traversal.
191 * left: the left side to diff.
192 * right: the right side to diff against.
193 * kd_forward: the traversal state for forwards traversal, modified by this
194 * function.
195 * This is carried over between invocations with increasing d.
196 * kd_forward points at the center of the state array, allowing
197 * negative indexes.
198 * kd_backward: the traversal state for backwards traversal, to find a meeting
199 * point.
200 * Since forwards is done first, kd_backward will be valid for d -
201 * 1, not d.
202 * kd_backward points at the center of the state array, allowing
203 * negative indexes.
204 * d: Step or distance counter, indicating for what value of d the kd_forward
205 * should be populated.
206 * For d == 0, kd_forward[0] is initialized, i.e. the first invocation should
207 * be for d == 0.
208 * meeting_snake: resulting meeting point, if any.
209 * Return true when a meeting point has been identified.
210 */
211 static int
212 diff_divide_myers_forward(bool *found_midpoint,
213 struct diff_data *left, struct diff_data *right,
214 int *kd_forward, int *kd_backward, int d,
215 struct diff_box *meeting_snake)
217 int delta = (int)right->atoms.len - (int)left->atoms.len;
218 int k;
219 int x;
220 int prev_x;
221 int prev_y;
222 int x_before_slide;
223 *found_midpoint = false;
225 for (k = d; k >= -d; k -= 2) {
226 if (k < -(int)right->atoms.len || k > (int)left->atoms.len) {
227 /* This diagonal is completely outside of the Myers
228 * graph, don't calculate it. */
229 if (k < 0) {
230 /* We are traversing negatively, and already
231 * below the entire graph, nothing will come of
232 * this. */
233 debug(" break\n");
234 break;
236 debug(" continue\n");
237 continue;
239 if (d == 0) {
240 /* This is the initializing step. There is no prev_k
241 * yet, get the initial x from the top left of the Myers
242 * graph. */
243 x = 0;
244 prev_x = x;
245 prev_y = xk_to_y(x, k);
247 /* Favoring "-" lines first means favoring moving rightwards in
248 * the Myers graph.
249 * For this, all k should derive from k - 1, only the bottom
250 * most k derive from k + 1:
252 * | d= 0 1 2
253 * ----+----------------
254 * k= |
255 * 2 | 2,0 <-- from prev_k = 2 - 1 = 1
256 * | /
257 * 1 | 1,0
258 * | /
259 * 0 | -->0,0 3,3
260 * | \\ /
261 * -1 | 0,1 <-- bottom most for d=1 from
262 * | \\ prev_k = -1 + 1 = 0
263 * -2 | 0,2 <-- bottom most for d=2 from
264 * prev_k = -2 + 1 = -1
266 * Except when a k + 1 from a previous run already means a
267 * further advancement in the graph.
268 * If k == d, there is no k + 1 and k - 1 is the only option.
269 * If k < d, use k + 1 in case that yields a larger x. Also use
270 * k + 1 if k - 1 is outside the graph.
271 */
272 else if (k > -d
273 && (k == d
274 || (k - 1 >= -(int)right->atoms.len
275 && kd_forward[k - 1] >= kd_forward[k + 1]))) {
276 /* Advance from k - 1.
277 * From position prev_k, step to the right in the Myers
278 * graph: x += 1.
279 */
280 int prev_k = k - 1;
281 prev_x = kd_forward[prev_k];
282 prev_y = xk_to_y(prev_x, prev_k);
283 x = prev_x + 1;
284 } else {
285 /* The bottom most one.
286 * From position prev_k, step to the bottom in the Myers
287 * graph: y += 1.
288 * Incrementing y is achieved by decrementing k while
289 * keeping the same x.
290 * (since we're deriving y from y = x - k).
291 */
292 int prev_k = k + 1;
293 prev_x = kd_forward[prev_k];
294 prev_y = xk_to_y(prev_x, prev_k);
295 x = prev_x;
298 x_before_slide = x;
299 /* Slide down any snake that we might find here. */
300 while (x < left->atoms.len && xk_to_y(x, k) < right->atoms.len) {
301 bool same;
302 int r = diff_atom_same(&same,
303 &left->atoms.head[x],
304 &right->atoms.head[
305 xk_to_y(x, k)]);
306 if (r)
307 return r;
308 if (!same)
309 break;
310 x++;
312 kd_forward[k] = x;
313 #if 0
314 if (x_before_slide != x) {
315 debug(" down %d similar lines\n", x - x_before_slide);
318 #if DEBUG
320 int fi;
321 for (fi = d; fi >= k; fi--) {
322 debug("kd_forward[%d] = (%d, %d)\n", fi,
323 kd_forward[fi], kd_forward[fi] - fi);
326 #endif
327 #endif
329 if (x < 0 || x > left->atoms.len
330 || xk_to_y(x, k) < 0 || xk_to_y(x, k) > right->atoms.len)
331 continue;
333 /* Figured out a new forwards traversal, see if this has gone
334 * onto or even past a preceding backwards traversal.
336 * If the delta in length is odd, then d and backwards_d hit the
337 * same state indexes:
338 * | d= 0 1 2 1 0
339 * ----+---------------- ----------------
340 * k= | c=
341 * 4 | 3
342 * |
343 * 3 | 2
344 * | same
345 * 2 | 2,0====5,3 1
346 * | / \
347 * 1 | 1,0 5,4<-- 0
348 * | / /
349 * 0 | -->0,0 3,3====4,4 -1
350 * | \ /
351 * -1 | 0,1 -2
352 * | \
353 * -2 | 0,2 -3
354 * |
356 * If the delta is even, they end up off-by-one, i.e. on
357 * different diagonals:
359 * | d= 0 1 2 1 0
360 * ----+---------------- ----------------
361 * | c=
362 * 3 | 3
363 * |
364 * 2 | 2,0 off 2
365 * | / \\
366 * 1 | 1,0 4,3 1
367 * | / // \
368 * 0 | -->0,0 3,3 4,4<-- 0
369 * | \ / /
370 * -1 | 0,1 3,4 -1
371 * | \ //
372 * -2 | 0,2 -2
373 * |
375 * So in the forward path, we can only match up diagonals when
376 * the delta is odd.
377 */
378 if ((delta & 1) == 0)
379 continue;
380 /* Forwards is done first, so the backwards one was still at
381 * d - 1. Can't do this for d == 0. */
382 int backwards_d = d - 1;
383 if (backwards_d < 0)
384 continue;
386 /* If both sides have the same length, forward and backward
387 * start on the same diagonal, meaning the backwards state index
388 * c == k.
389 * As soon as the lengths are not the same, the backwards
390 * traversal starts on a different diagonal, and c = k shifted
391 * by the difference in length.
392 */
393 int c = k_to_c(k, delta);
395 /* When the file sizes are very different, the traversal trees
396 * start on far distant diagonals.
397 * They don't necessarily meet straight on. See whether this
398 * forward value is on a diagonal that is also valid in
399 * kd_backward[], and match them if so. */
400 if (c >= -backwards_d && c <= backwards_d) {
401 /* Current k is on a diagonal that exists in
402 * kd_backward[]. If the two x positions have met or
403 * passed (forward walked onto or past backward), then
404 * we've found a midpoint / a mid-box.
406 * When forwards and backwards traversals meet, the
407 * endpoints of the mid-snake are not the two points in
408 * kd_forward and kd_backward, but rather the section
409 * that was slid (if any) of the current
410 * forward/backward traversal only.
412 * For example:
414 * o
415 * \
416 * o
417 * \
418 * o
419 * \
420 * o
421 * \
422 * X o o
423 * | | |
424 * o-o-o o
425 * \|
426 * M
427 * \
428 * o
429 * \
430 * A o
431 * | |
432 * o-o-o
434 * The forward traversal reached M from the top and slid
435 * downwards to A. The backward traversal already
436 * reached X, which is not a straight line from M
437 * anymore, so picking a mid-snake from M to X would
438 * yield a mistake.
440 * The correct mid-snake is between M and A. M is where
441 * the forward traversal hit the diagonal that the
442 * backward traversal has already passed, and A is what
443 * it reaches when sliding down identical lines.
444 */
445 int backward_x = kd_backward[c];
446 if (x >= backward_x) {
447 if (x_before_slide != x) {
448 /* met after sliding up a mid-snake */
449 *meeting_snake = (struct diff_box){
450 .left_start = x_before_slide,
451 .left_end = x,
452 .right_start = xc_to_y(x_before_slide,
453 c, delta),
454 .right_end = xk_to_y(x, k),
455 };
456 } else {
457 /* met after a side step, non-identical
458 * line. Mark that as box divider
459 * instead. This makes sure that
460 * myers_divide never returns the same
461 * box that came as input, avoiding
462 * "infinite" looping. */
463 *meeting_snake = (struct diff_box){
464 .left_start = prev_x,
465 .left_end = x,
466 .right_start = prev_y,
467 .right_end = xk_to_y(x, k),
468 };
470 debug("HIT x=(%u,%u) - y=(%u,%u)\n",
471 meeting_snake->left_start,
472 meeting_snake->right_start,
473 meeting_snake->left_end,
474 meeting_snake->right_end);
475 debug_dump_myers_graph(left, right, NULL,
476 kd_forward, d,
477 kd_backward, d-1);
478 *found_midpoint = true;
479 return 0;
484 return 0;
487 /* Do one backwards step in the "divide and conquer" graph traversal.
488 * left: the left side to diff.
489 * right: the right side to diff against.
490 * kd_forward: the traversal state for forwards traversal, to find a meeting
491 * point.
492 * Since forwards is done first, after this, both kd_forward and
493 * kd_backward will be valid for d.
494 * kd_forward points at the center of the state array, allowing
495 * negative indexes.
496 * kd_backward: the traversal state for backwards traversal, to find a meeting
497 * point.
498 * This is carried over between invocations with increasing d.
499 * kd_backward points at the center of the state array, allowing
500 * negative indexes.
501 * d: Step or distance counter, indicating for what value of d the kd_backward
502 * should be populated.
503 * Before the first invocation, kd_backward[0] shall point at the bottom
504 * right of the Myers graph (left.len, right.len).
505 * The first invocation will be for d == 1.
506 * meeting_snake: resulting meeting point, if any.
507 * Return true when a meeting point has been identified.
508 */
509 static int
510 diff_divide_myers_backward(bool *found_midpoint,
511 struct diff_data *left, struct diff_data *right,
512 int *kd_forward, int *kd_backward, int d,
513 struct diff_box *meeting_snake)
515 int delta = (int)right->atoms.len - (int)left->atoms.len;
516 int c;
517 int x;
518 int prev_x;
519 int prev_y;
520 int x_before_slide;
522 *found_midpoint = false;
524 for (c = d; c >= -d; c -= 2) {
525 if (c < -(int)left->atoms.len || c > (int)right->atoms.len) {
526 /* This diagonal is completely outside of the Myers
527 * graph, don't calculate it. */
528 if (c < 0) {
529 /* We are traversing negatively, and already
530 * below the entire graph, nothing will come of
531 * this. */
532 break;
534 continue;
536 if (d == 0) {
537 /* This is the initializing step. There is no prev_c
538 * yet, get the initial x from the bottom right of the
539 * Myers graph. */
540 x = left->atoms.len;
541 prev_x = x;
542 prev_y = xc_to_y(x, c, delta);
544 /* Favoring "-" lines first means favoring moving rightwards in
545 * the Myers graph.
546 * For this, all c should derive from c - 1, only the bottom
547 * most c derive from c + 1:
549 * 2 1 0
550 * ---------------------------------------------------
551 * c=
552 * 3
554 * from prev_c = c - 1 --> 5,2 2
555 * \
556 * 5,3 1
557 * \
558 * 4,3 5,4<-- 0
559 * \ /
560 * bottom most for d=1 from c + 1 --> 4,4 -1
561 * /
562 * bottom most for d=2 --> 3,4 -2
564 * Except when a c + 1 from a previous run already means a
565 * further advancement in the graph.
566 * If c == d, there is no c + 1 and c - 1 is the only option.
567 * If c < d, use c + 1 in case that yields a larger x.
568 * Also use c + 1 if c - 1 is outside the graph.
569 */
570 else if (c > -d && (c == d
571 || (c - 1 >= -(int)right->atoms.len
572 && kd_backward[c - 1] <= kd_backward[c + 1]))) {
573 /* A top one.
574 * From position prev_c, step upwards in the Myers
575 * graph: y -= 1.
576 * Decrementing y is achieved by incrementing c while
577 * keeping the same x. (since we're deriving y from
578 * y = x - c + delta).
579 */
580 int prev_c = c - 1;
581 prev_x = kd_backward[prev_c];
582 prev_y = xc_to_y(prev_x, prev_c, delta);
583 x = prev_x;
584 } else {
585 /* The bottom most one.
586 * From position prev_c, step to the left in the Myers
587 * graph: x -= 1.
588 */
589 int prev_c = c + 1;
590 prev_x = kd_backward[prev_c];
591 prev_y = xc_to_y(prev_x, prev_c, delta);
592 x = prev_x - 1;
595 /* Slide up any snake that we might find here (sections of
596 * identical lines on both sides). */
597 #if 0
598 debug("c=%d x-1=%d Yb-1=%d-1=%d\n", c, x-1, xc_to_y(x, c,
599 delta),
600 xc_to_y(x, c, delta)-1);
601 if (x > 0) {
602 debug(" l=");
603 debug_dump_atom(left, right, &left->atoms.head[x-1]);
605 if (xc_to_y(x, c, delta) > 0) {
606 debug(" r=");
607 debug_dump_atom(right, left,
608 &right->atoms.head[xc_to_y(x, c, delta)-1]);
610 #endif
611 x_before_slide = x;
612 while (x > 0 && xc_to_y(x, c, delta) > 0) {
613 bool same;
614 int r = diff_atom_same(&same,
615 &left->atoms.head[x-1],
616 &right->atoms.head[
617 xc_to_y(x, c, delta)-1]);
618 if (r)
619 return r;
620 if (!same)
621 break;
622 x--;
624 kd_backward[c] = x;
625 #if 0
626 if (x_before_slide != x) {
627 debug(" up %d similar lines\n", x_before_slide - x);
630 if (DEBUG) {
631 int fi;
632 for (fi = d; fi >= c; fi--) {
633 debug("kd_backward[%d] = (%d, %d)\n",
634 fi,
635 kd_backward[fi],
636 kd_backward[fi] - fi + delta);
639 #endif
641 if (x < 0 || x > left->atoms.len
642 || xc_to_y(x, c, delta) < 0
643 || xc_to_y(x, c, delta) > right->atoms.len)
644 continue;
646 /* Figured out a new backwards traversal, see if this has gone
647 * onto or even past a preceding forwards traversal.
649 * If the delta in length is even, then d and backwards_d hit
650 * the same state indexes -- note how this is different from in
651 * the forwards traversal, because now both d are the same:
653 * | d= 0 1 2 2 1 0
654 * ----+---------------- --------------------
655 * k= | c=
656 * 4 |
657 * |
658 * 3 | 3
659 * | same
660 * 2 | 2,0====5,2 2
661 * | / \
662 * 1 | 1,0 5,3 1
663 * | / / \
664 * 0 | -->0,0 3,3====4,3 5,4<-- 0
665 * | \ / /
666 * -1 | 0,1 4,4 -1
667 * | \
668 * -2 | 0,2 -2
669 * |
670 * -3
671 * If the delta is odd, they end up off-by-one, i.e. on
672 * different diagonals.
673 * So in the backward path, we can only match up diagonals when
674 * the delta is even.
675 */
676 if ((delta & 1) != 0)
677 continue;
678 /* Forwards was done first, now both d are the same. */
679 int forwards_d = d;
681 /* As soon as the lengths are not the same, the
682 * backwards traversal starts on a different diagonal,
683 * and c = k shifted by the difference in length.
684 */
685 int k = c_to_k(c, delta);
687 /* When the file sizes are very different, the traversal trees
688 * start on far distant diagonals.
689 * They don't necessarily meet straight on. See whether this
690 * backward value is also on a valid diagonal in kd_forward[],
691 * and match them if so. */
692 if (k >= -forwards_d && k <= forwards_d) {
693 /* Current c is on a diagonal that exists in
694 * kd_forward[]. If the two x positions have met or
695 * passed (backward walked onto or past forward), then
696 * we've found a midpoint / a mid-box.
698 * When forwards and backwards traversals meet, the
699 * endpoints of the mid-snake are not the two points in
700 * kd_forward and kd_backward, but rather the section
701 * that was slid (if any) of the current
702 * forward/backward traversal only.
704 * For example:
706 * o-o-o
707 * | |
708 * o A
709 * | \
710 * o o
711 * \
712 * M
713 * |\
714 * o o-o-o
715 * | | |
716 * o o X
717 * \
718 * o
719 * \
720 * o
721 * \
722 * o
724 * The backward traversal reached M from the bottom and
725 * slid upwards. The forward traversal already reached
726 * X, which is not a straight line from M anymore, so
727 * picking a mid-snake from M to X would yield a
728 * mistake.
730 * The correct mid-snake is between M and A. M is where
731 * the backward traversal hit the diagonal that the
732 * forwards traversal has already passed, and A is what
733 * it reaches when sliding up identical lines.
734 */
736 int forward_x = kd_forward[k];
737 if (forward_x >= x) {
738 if (x_before_slide != x) {
739 /* met after sliding down a mid-snake */
740 *meeting_snake = (struct diff_box){
741 .left_start = x,
742 .left_end = x_before_slide,
743 .right_start = xc_to_y(x, c, delta),
744 .right_end = xk_to_y(x_before_slide, k),
745 };
746 } else {
747 /* met after a side step, non-identical
748 * line. Mark that as box divider
749 * instead. This makes sure that
750 * myers_divide never returns the same
751 * box that came as input, avoiding
752 * "infinite" looping. */
753 *meeting_snake = (struct diff_box){
754 .left_start = x,
755 .left_end = prev_x,
756 .right_start = xc_to_y(x, c, delta),
757 .right_end = prev_y,
758 };
760 debug("HIT x=%u,%u - y=%u,%u\n",
761 meeting_snake->left_start,
762 meeting_snake->right_start,
763 meeting_snake->left_end,
764 meeting_snake->right_end);
765 debug_dump_myers_graph(left, right, NULL,
766 kd_forward, d,
767 kd_backward, d);
768 *found_midpoint = true;
769 return 0;
773 return 0;
776 /* Integer square root approximation */
777 static int
778 shift_sqrt(int val)
780 int i;
781 for (i = 1; val > 0; val >>= 2)
782 i <<= 1;
783 return i;
786 /* Myers "Divide et Impera": tracing forwards from the start and backwards from
787 * the end to find a midpoint that divides the problem into smaller chunks.
788 * Requires only linear amounts of memory. */
789 int
790 diff_algo_myers_divide(const struct diff_algo_config *algo_config,
791 struct diff_state *state)
793 int rc = ENOMEM;
794 struct diff_data *left = &state->left;
795 struct diff_data *right = &state->right;
796 int *kd_buf;
798 debug("\n** %s\n", __func__);
799 debug("left:\n");
800 debug_dump(left);
801 debug("right:\n");
802 debug_dump(right);
804 /* Allocate two columns of a Myers graph, one for the forward and one
805 * for the backward traversal. */
806 unsigned int max = left->atoms.len + right->atoms.len;
807 size_t kd_len = max + 1;
808 size_t kd_buf_size = kd_len << 1;
810 if (state->kd_buf_size < kd_buf_size) {
811 kd_buf = reallocarray(state->kd_buf, kd_buf_size,
812 sizeof(int));
813 if (!kd_buf)
814 return ENOMEM;
815 state->kd_buf = kd_buf;
816 state->kd_buf_size = kd_buf_size;
817 } else
818 kd_buf = state->kd_buf;
819 int i;
820 for (i = 0; i < kd_buf_size; i++)
821 kd_buf[i] = -1;
822 int *kd_forward = kd_buf;
823 int *kd_backward = kd_buf + kd_len;
824 int max_effort = shift_sqrt(max/2);
826 /* The 'k' axis in Myers spans positive and negative indexes, so point
827 * the kd to the middle.
828 * It is then possible to index from -max/2 .. max/2. */
829 kd_forward += max/2;
830 kd_backward += max/2;
832 int d;
833 struct diff_box mid_snake = {};
834 bool found_midpoint = false;
835 for (d = 0; d <= (max/2); d++) {
836 int r;
837 r = diff_divide_myers_forward(&found_midpoint, left, right,
838 kd_forward, kd_backward, d,
839 &mid_snake);
840 if (r)
841 return r;
842 if (found_midpoint)
843 break;
844 r = diff_divide_myers_backward(&found_midpoint, left, right,
845 kd_forward, kd_backward, d,
846 &mid_snake);
847 if (r)
848 return r;
849 if (found_midpoint)
850 break;
852 /* Limit the effort spent looking for a mid snake. If files have
853 * very few lines in common, the effort spent to find nice mid
854 * snakes is just not worth it, the diff result will still be
855 * essentially minus everything on the left, plus everything on
856 * the right, with a few useless matches here and there. */
857 if (d > max_effort) {
858 /* pick the furthest reaching point from
859 * kd_forward and kd_backward, and use that as a
860 * midpoint, to not step into another diff algo
861 * recursion with unchanged box. */
862 int delta = (int)right->atoms.len - (int)left->atoms.len;
863 int x = 0;
864 int y;
865 int i;
866 int best_forward_i = 0;
867 int best_forward_distance = 0;
868 int best_backward_i = 0;
869 int best_backward_distance = 0;
870 int distance;
871 int best_forward_x;
872 int best_forward_y;
873 int best_backward_x;
874 int best_backward_y;
876 debug("~~~ HIT d = %d > max_effort = %d\n", d, max_effort);
877 debug_dump_myers_graph(left, right, NULL,
878 kd_forward, d,
879 kd_backward, d);
881 for (i = d; i >= -d; i -= 2) {
882 if (i >= -(int)right->atoms.len && i <= (int)left->atoms.len) {
883 x = kd_forward[i];
884 y = xk_to_y(x, i);
885 distance = x + y;
886 if (distance > best_forward_distance) {
887 best_forward_distance = distance;
888 best_forward_i = i;
892 if (i >= -(int)left->atoms.len && i <= (int)right->atoms.len) {
893 x = kd_backward[i];
894 y = xc_to_y(x, i, delta);
895 distance = (right->atoms.len - x)
896 + (left->atoms.len - y);
897 if (distance >= best_backward_distance) {
898 best_backward_distance = distance;
899 best_backward_i = i;
904 /* The myers-divide didn't meet in the middle. We just
905 * figured out the places where the forward path
906 * advanced the most, and the backward path advanced the
907 * most. Just divide at whichever one of those two is better.
909 * o-o
910 * |
911 * o
912 * \
913 * o
914 * \
915 * F <-- cut here
919 * or here --> B
920 * \
921 * o
922 * \
923 * o
924 * |
925 * o-o
926 */
927 best_forward_x = kd_forward[best_forward_i];
928 best_forward_y = xk_to_y(best_forward_x, best_forward_i);
929 best_backward_x = kd_backward[best_backward_i];
930 best_backward_y = xc_to_y(best_backward_x, best_backward_i, delta);
932 if (best_forward_distance >= best_backward_distance) {
933 x = best_forward_x;
934 y = best_forward_y;
935 } else {
936 x = best_backward_x;
937 y = best_backward_y;
940 debug("max_effort cut at x=%d y=%d\n", x, y);
941 if (x < 0 || y < 0
942 || x > left->atoms.len || y > right->atoms.len)
943 break;
945 found_midpoint = true;
946 mid_snake = (struct diff_box){
947 .left_start = x,
948 .left_end = x,
949 .right_start = y,
950 .right_end = y,
951 };
952 break;
956 if (!found_midpoint) {
957 /* Divide and conquer failed to find a meeting point. Use the
958 * fallback_algo defined in the algo_config (leave this to the
959 * caller). This is just paranoia/sanity, we normally should
960 * always find a midpoint.
961 */
962 debug(" no midpoint \n");
963 rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
964 goto return_rc;
965 } else {
966 debug(" mid snake L: %u to %u of %u R: %u to %u of %u\n",
967 mid_snake.left_start, mid_snake.left_end, left->atoms.len,
968 mid_snake.right_start, mid_snake.right_end,
969 right->atoms.len);
971 /* Section before the mid-snake. */
972 debug("Section before the mid-snake\n");
974 struct diff_atom *left_atom = &left->atoms.head[0];
975 unsigned int left_section_len = mid_snake.left_start;
976 struct diff_atom *right_atom = &right->atoms.head[0];
977 unsigned int right_section_len = mid_snake.right_start;
979 if (left_section_len && right_section_len) {
980 /* Record an unsolved chunk, the caller will apply
981 * inner_algo() on this chunk. */
982 if (!diff_state_add_chunk(state, false,
983 left_atom, left_section_len,
984 right_atom,
985 right_section_len))
986 goto return_rc;
987 } else if (left_section_len && !right_section_len) {
988 /* Only left atoms and none on the right, they form a
989 * "minus" chunk, then. */
990 if (!diff_state_add_chunk(state, true,
991 left_atom, left_section_len,
992 right_atom, 0))
993 goto return_rc;
994 } else if (!left_section_len && right_section_len) {
995 /* No left atoms, only atoms on the right, they form a
996 * "plus" chunk, then. */
997 if (!diff_state_add_chunk(state, true,
998 left_atom, 0,
999 right_atom,
1000 right_section_len))
1001 goto return_rc;
1003 /* else: left_section_len == 0 and right_section_len == 0, i.e.
1004 * nothing before the mid-snake. */
1006 if (mid_snake.left_end > mid_snake.left_start
1007 || mid_snake.right_end > mid_snake.right_start) {
1008 /* The midpoint is a section of identical data on both
1009 * sides, or a certain differing line: that section
1010 * immediately becomes a solved chunk. */
1011 debug("the mid-snake\n");
1012 if (!diff_state_add_chunk(state, true,
1013 &left->atoms.head[mid_snake.left_start],
1014 mid_snake.left_end - mid_snake.left_start,
1015 &right->atoms.head[mid_snake.right_start],
1016 mid_snake.right_end - mid_snake.right_start))
1017 goto return_rc;
1020 /* Section after the mid-snake. */
1021 debug("Section after the mid-snake\n");
1022 debug(" left_end %u right_end %u\n",
1023 mid_snake.left_end, mid_snake.right_end);
1024 debug(" left_count %u right_count %u\n",
1025 left->atoms.len, right->atoms.len);
1026 left_atom = &left->atoms.head[mid_snake.left_end];
1027 left_section_len = left->atoms.len - mid_snake.left_end;
1028 right_atom = &right->atoms.head[mid_snake.right_end];
1029 right_section_len = right->atoms.len - mid_snake.right_end;
1031 if (left_section_len && right_section_len) {
1032 /* Record an unsolved chunk, the caller will apply
1033 * inner_algo() on this chunk. */
1034 if (!diff_state_add_chunk(state, false,
1035 left_atom, left_section_len,
1036 right_atom,
1037 right_section_len))
1038 goto return_rc;
1039 } else if (left_section_len && !right_section_len) {
1040 /* Only left atoms and none on the right, they form a
1041 * "minus" chunk, then. */
1042 if (!diff_state_add_chunk(state, true,
1043 left_atom, left_section_len,
1044 right_atom, 0))
1045 goto return_rc;
1046 } else if (!left_section_len && right_section_len) {
1047 /* No left atoms, only atoms on the right, they form a
1048 * "plus" chunk, then. */
1049 if (!diff_state_add_chunk(state, true,
1050 left_atom, 0,
1051 right_atom,
1052 right_section_len))
1053 goto return_rc;
1055 /* else: left_section_len == 0 and right_section_len == 0, i.e.
1056 * nothing after the mid-snake. */
1059 rc = DIFF_RC_OK;
1061 return_rc:
1062 debug("** END %s\n", __func__);
1063 return rc;
1066 /* Myers Diff tracing from the start all the way through to the end, requiring
1067 * quadratic amounts of memory. This can fail if the required space surpasses
1068 * algo_config->permitted_state_size. */
1069 int
1070 diff_algo_myers(const struct diff_algo_config *algo_config,
1071 struct diff_state *state)
1073 /* do a diff_divide_myers_forward() without a _backward(), so that it
1074 * walks forward across the entire files to reach the end. Keep each
1075 * run's state, and do a final backtrace. */
1076 int rc = ENOMEM;
1077 struct diff_data *left = &state->left;
1078 struct diff_data *right = &state->right;
1079 int *kd_buf;
1081 debug("\n** %s\n", __func__);
1082 debug("left:\n");
1083 debug_dump(left);
1084 debug("right:\n");
1085 debug_dump(right);
1086 debug_dump_myers_graph(left, right, NULL, NULL, 0, NULL, 0);
1088 /* Allocate two columns of a Myers graph, one for the forward and one
1089 * for the backward traversal. */
1090 unsigned int max = left->atoms.len + right->atoms.len;
1091 size_t kd_len = max + 1 + max;
1092 size_t kd_buf_size = kd_len * kd_len;
1093 size_t kd_state_size = kd_buf_size * sizeof(int);
1094 debug("state size: %zu\n", kd_state_size);
1095 if (kd_buf_size < kd_len /* overflow? */
1096 || kd_state_size > algo_config->permitted_state_size) {
1097 debug("state size %zu > permitted_state_size %zu, use fallback_algo\n",
1098 kd_state_size, algo_config->permitted_state_size);
1099 return DIFF_RC_USE_DIFF_ALGO_FALLBACK;
1102 if (state->kd_buf_size < kd_buf_size) {
1103 kd_buf = reallocarray(state->kd_buf, kd_buf_size,
1104 sizeof(int));
1105 if (!kd_buf)
1106 return ENOMEM;
1107 state->kd_buf = kd_buf;
1108 state->kd_buf_size = kd_buf_size;
1109 } else
1110 kd_buf = state->kd_buf;
1112 int i;
1113 for (i = 0; i < kd_buf_size; i++)
1114 kd_buf[i] = -1;
1116 /* The 'k' axis in Myers spans positive and negative indexes, so point
1117 * the kd to the middle.
1118 * It is then possible to index from -max .. max. */
1119 int *kd_origin = kd_buf + max;
1120 int *kd_column = kd_origin;
1122 int d;
1123 int backtrack_d = -1;
1124 int backtrack_k = 0;
1125 int k;
1126 int x, y;
1127 for (d = 0; d <= max; d++, kd_column += kd_len) {
1128 debug("-- %s d=%d\n", __func__, d);
1130 for (k = d; k >= -d; k -= 2) {
1131 if (k < -(int)right->atoms.len
1132 || k > (int)left->atoms.len) {
1133 /* This diagonal is completely outside of the
1134 * Myers graph, don't calculate it. */
1135 if (k < -(int)right->atoms.len)
1136 debug(" %d k <"
1137 " -(int)right->atoms.len %d\n",
1138 k, -(int)right->atoms.len);
1139 else
1140 debug(" %d k > left->atoms.len %d\n", k,
1141 left->atoms.len);
1142 if (k < 0) {
1143 /* We are traversing negatively, and
1144 * already below the entire graph,
1145 * nothing will come of this. */
1146 debug(" break\n");
1147 break;
1149 debug(" continue\n");
1150 continue;
1153 if (d == 0) {
1154 /* This is the initializing step. There is no
1155 * prev_k yet, get the initial x from the top
1156 * left of the Myers graph. */
1157 x = 0;
1158 } else {
1159 int *kd_prev_column = kd_column - kd_len;
1161 /* Favoring "-" lines first means favoring
1162 * moving rightwards in the Myers graph.
1163 * For this, all k should derive from k - 1,
1164 * only the bottom most k derive from k + 1:
1166 * | d= 0 1 2
1167 * ----+----------------
1168 * k= |
1169 * 2 | 2,0 <-- from
1170 * | / prev_k = 2 - 1 = 1
1171 * 1 | 1,0
1172 * | /
1173 * 0 | -->0,0 3,3
1174 * | \\ /
1175 * -1 | 0,1 <-- bottom most for d=1
1176 * | \\ from prev_k = -1+1 = 0
1177 * -2 | 0,2 <-- bottom most for
1178 * d=2 from
1179 * prev_k = -2+1 = -1
1181 * Except when a k + 1 from a previous run
1182 * already means a further advancement in the
1183 * graph.
1184 * If k == d, there is no k + 1 and k - 1 is the
1185 * only option.
1186 * If k < d, use k + 1 in case that yields a
1187 * larger x. Also use k + 1 if k - 1 is outside
1188 * the graph.
1190 if (k > -d
1191 && (k == d
1192 || (k - 1 >= -(int)right->atoms.len
1193 && kd_prev_column[k - 1]
1194 >= kd_prev_column[k + 1]))) {
1195 /* Advance from k - 1.
1196 * From position prev_k, step to the
1197 * right in the Myers graph: x += 1.
1199 int prev_k = k - 1;
1200 int prev_x = kd_prev_column[prev_k];
1201 x = prev_x + 1;
1202 } else {
1203 /* The bottom most one.
1204 * From position prev_k, step to the
1205 * bottom in the Myers graph: y += 1.
1206 * Incrementing y is achieved by
1207 * decrementing k while keeping the same
1208 * x. (since we're deriving y from y =
1209 * x - k).
1211 int prev_k = k + 1;
1212 int prev_x = kd_prev_column[prev_k];
1213 x = prev_x;
1217 /* Slide down any snake that we might find here. */
1218 while (x < left->atoms.len
1219 && xk_to_y(x, k) < right->atoms.len) {
1220 bool same;
1221 int r = diff_atom_same(&same,
1222 &left->atoms.head[x],
1223 &right->atoms.head[
1224 xk_to_y(x, k)]);
1225 if (r)
1226 return r;
1227 if (!same)
1228 break;
1229 x++;
1231 kd_column[k] = x;
1233 if (x == left->atoms.len
1234 && xk_to_y(x, k) == right->atoms.len) {
1235 /* Found a path */
1236 backtrack_d = d;
1237 backtrack_k = k;
1238 debug("Reached the end at d = %d, k = %d\n",
1239 backtrack_d, backtrack_k);
1240 break;
1244 if (backtrack_d >= 0)
1245 break;
1248 debug_dump_myers_graph(left, right, kd_origin, NULL, 0, NULL, 0);
1250 /* backtrack. A matrix spanning from start to end of the file is ready:
1252 * | d= 0 1 2 3 4
1253 * ----+---------------------------------
1254 * k= |
1255 * 3 |
1256 * |
1257 * 2 | 2,0
1258 * | /
1259 * 1 | 1,0 4,3
1260 * | / / \
1261 * 0 | -->0,0 3,3 4,4 --> backtrack_d = 4, backtrack_k = 0
1262 * | \ / \
1263 * -1 | 0,1 3,4
1264 * | \
1265 * -2 | 0,2
1266 * |
1268 * From (4,4) backwards, find the previous position that is the largest, and remember it.
1271 for (d = backtrack_d, k = backtrack_k; d >= 0; d--) {
1272 x = kd_column[k];
1273 y = xk_to_y(x, k);
1275 /* When the best position is identified, remember it for that
1276 * kd_column.
1277 * That kd_column is no longer needed otherwise, so just
1278 * re-purpose kd_column[0] = x and kd_column[1] = y,
1279 * so that there is no need to allocate more memory.
1281 kd_column[0] = x;
1282 kd_column[1] = y;
1283 debug("Backtrack d=%d: xy=(%d, %d)\n",
1284 d, kd_column[0], kd_column[1]);
1286 /* Don't access memory before kd_buf */
1287 if (d == 0)
1288 break;
1289 int *kd_prev_column = kd_column - kd_len;
1291 /* When y == 0, backtracking downwards (k-1) is the only way.
1292 * When x == 0, backtracking upwards (k+1) is the only way.
1294 * | d= 0 1 2 3 4
1295 * ----+---------------------------------
1296 * k= |
1297 * 3 |
1298 * | ..y == 0
1299 * 2 | 2,0
1300 * | /
1301 * 1 | 1,0 4,3
1302 * | / / \
1303 * 0 | -->0,0 3,3 4,4 --> backtrack_d = 4,
1304 * | \ / \ backtrack_k = 0
1305 * -1 | 0,1 3,4
1306 * | \
1307 * -2 | 0,2__
1308 * | x == 0
1310 if (y == 0
1311 || (x > 0
1312 && kd_prev_column[k - 1] >= kd_prev_column[k + 1])) {
1313 k = k - 1;
1314 debug("prev k=k-1=%d x=%d y=%d\n",
1315 k, kd_prev_column[k],
1316 xk_to_y(kd_prev_column[k], k));
1317 } else {
1318 k = k + 1;
1319 debug("prev k=k+1=%d x=%d y=%d\n",
1320 k, kd_prev_column[k],
1321 xk_to_y(kd_prev_column[k], k));
1323 kd_column = kd_prev_column;
1326 /* Forwards again, this time recording the diff chunks.
1327 * Definitely start from 0,0. kd_column[0] may actually point to the
1328 * bottom of a snake starting at 0,0 */
1329 x = 0;
1330 y = 0;
1332 kd_column = kd_origin;
1333 for (d = 0; d <= backtrack_d; d++, kd_column += kd_len) {
1334 int next_x = kd_column[0];
1335 int next_y = kd_column[1];
1336 debug("Forward track from xy(%d,%d) to xy(%d,%d)\n",
1337 x, y, next_x, next_y);
1339 struct diff_atom *left_atom = &left->atoms.head[x];
1340 int left_section_len = next_x - x;
1341 struct diff_atom *right_atom = &right->atoms.head[y];
1342 int right_section_len = next_y - y;
1344 rc = ENOMEM;
1345 if (left_section_len && right_section_len) {
1346 /* This must be a snake slide.
1347 * Snake slides have a straight line leading into them
1348 * (except when starting at (0,0)). Find out whether the
1349 * lead-in is horizontal or vertical:
1351 * left
1352 * ---------->
1353 * |
1354 * r| o-o o
1355 * i| \ |
1356 * g| o o
1357 * h| \ \
1358 * t| o o
1359 * v
1361 * If left_section_len > right_section_len, the lead-in
1362 * is horizontal, meaning first remove one atom from the
1363 * left before sliding down the snake.
1364 * If right_section_len > left_section_len, the lead-in
1365 * is vetical, so add one atom from the right before
1366 * sliding down the snake. */
1367 if (left_section_len == right_section_len + 1) {
1368 if (!diff_state_add_chunk(state, true,
1369 left_atom, 1,
1370 right_atom, 0))
1371 goto return_rc;
1372 left_atom++;
1373 left_section_len--;
1374 } else if (right_section_len == left_section_len + 1) {
1375 if (!diff_state_add_chunk(state, true,
1376 left_atom, 0,
1377 right_atom, 1))
1378 goto return_rc;
1379 right_atom++;
1380 right_section_len--;
1381 } else if (left_section_len != right_section_len) {
1382 /* The numbers are making no sense. Should never
1383 * happen. */
1384 rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
1385 goto return_rc;
1388 if (!diff_state_add_chunk(state, true,
1389 left_atom, left_section_len,
1390 right_atom,
1391 right_section_len))
1392 goto return_rc;
1393 } else if (left_section_len && !right_section_len) {
1394 /* Only left atoms and none on the right, they form a
1395 * "minus" chunk, then. */
1396 if (!diff_state_add_chunk(state, true,
1397 left_atom, left_section_len,
1398 right_atom, 0))
1399 goto return_rc;
1400 } else if (!left_section_len && right_section_len) {
1401 /* No left atoms, only atoms on the right, they form a
1402 * "plus" chunk, then. */
1403 if (!diff_state_add_chunk(state, true,
1404 left_atom, 0,
1405 right_atom,
1406 right_section_len))
1407 goto return_rc;
1410 x = next_x;
1411 y = next_y;
1414 rc = DIFF_RC_OK;
1416 return_rc:
1417 debug("** END %s rc=%d\n", __func__, rc);
1418 return rc;